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FINAL TECHNICAL REPORT
EXECUTIVE SUMMARY
This is the final report for gfant AFOSR-89-0518. While its principal portion is the
last part of this report, it may be appropriate to summarize first the achievements
of the past three years. We begin by reprinting the
1. 1989-90 Annual Technical Report Executive Summary; and the
2. 1990-91 Annual Technical Report Executive Summary.

The above two items give an overview of our activities and achievements during
the first two years of this grant.

The main part of the current report is entitled

3. Artificial Intelligence Methodologies for Aerospace
and Other Control Systems;

it is the culmination of a project by the Principal Investigator and one of his
students. The major subjects addressed in this report are the following:

3a. Neural Networks Approach to Control Systems; ‘}%,
' N

3b. Differential Games with Neural Networks; _”9’%)
. T
3c. Aircraft Control in the Presence of Windshear; 2
' e/
3d. Optimal Control in a Layered Defense System. N
. . >
Concerning our other activities in the course of the year: we attempted to report
on most of them by letter to AFOSR, as they occurred (Copies of the letters
enclosed). Examples are presentations given by o'1r group and publications, of
which we have already provided copies to AFOSR. We list these here in For
- chronological orde:: *—g‘—‘
4. Teaching Neural Networks Nuclear Physics; 4 D
(an extensive undergraduate project) A O e
5. System Identification with Dynamic Neural Networks; oy
v ebMblcoD

(preprint) . = S
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6. Control and Disturbance Rejectior. with a Dynamic Neurocontroller;
(preprint)

7. Maneuver Prediction in Air Combat Via Artificial Neural Networks;
(reprint)

8 Adjacency of the 0-1 Knapsack Problem;
(reprint)

9. On Differential Games With Neural Networks;
(Proceedings of an AFOSR Workshop)

10. Character Recognition: Qualitative Reasoning and Neural Networks;
(reprint)

11. Collision Avoidance and Low-Observable Navigation |
in a Dynamic Environment;
(reprint)

12. An Optnmzatlon Algorithm with Probabilistic Esumatxon,
(preprint)

There were two particular activities with which we were mvolved extensively in
the course of the past year:

13. Organizing several recxprocal visits, presentations and discussions between
our group and the Analysis Group at HQ MAC, Scott AFB;

14 Co-sponsonng “ANNIE ‘92": an international conference on artxflclal
neural networks in engineering. '

Finally, we also established a workmg relahonshxp with three St. Louis area
companies:

ESCO Corporation:
(Collaboratmg with them to develop an Al assisted
and PC based unarmed aircraft defense system)

United Vanlines:
(Helping them to develop optimal routing and scheduling algorithms)

St. Louis Post Dispatch:
(Attempting to apply the Al technology developed by
us to the communication needs of the 21st century)




This report discusses our new methodology for dealing with time dependent contro! and

Lo <e¥0 .
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The principal portion of this Annual Technical Report is @ work by the Prinzipal Investigater and
one of his students:

Semantic Control in Centinuous Systems:
Applications to Aerospaco Froblems.

optimization problems: and, in particular, its application to combat path planning in the
presence of muitiple opposing radar coverage, with time dependent scheduling problems ond

with flight and fire control vig logic programming.

Precoding this report we cre presenting a brief discussion, intended to explain and justify why we
decided o broaden our orginal proposed aims and begin to consider

- Slechastic Oplimization Probleras.

The importance of this extension seems particularly evident in the light of the tasks and missions
of |

' } v Desert Sword .

in the course cf thé reporting period we Qlso submitted to AFOSR copies of the writeups of two
additional pro;ects that we have completed. We are attaching copies of the relevant covering
letters here. These consisted of the following:

!

! Flight and Fire Control with Logic Programmmg
by'EMnY Rodin and D. Geist; Comp. and Math. with Applications,

f Vol. 20, No. 9/10, pp. 15-27, 1990,

: Methods for Stochastic Optimization
by DI Yan end H. Mukat; a Technical Report by the
Center for Optimization and Semantic Control,

We also transmitted coples of the doctoral dissertation of another student of the Principal
Investigator. While that person was not supported by this grant, and his work then appeared to
have no relevance to the project at hand, we felt that since the Artificial intelligence
methodologies employed in that dissertation were derived from ours, it may be appropriate to
present those results to the AFOSR. Now, however, with the threat of large scale Iraqui sabotage
of Middle Eastem oil fields a possibility, that dissertation may become very relevant indeed:

Acidic Deposition Contro! Through an Adificial Intelligence Mathod
by Ji-Shing Lin.

We were aiso proud to report In the course of the past year that one of our graduate students,
Kevin Ruland, who has been involved with our resea'ch projects for two years now, was
owarded the very prestigious

Merzury Seven Fellowship.

An additional item of possible relevance here is that the P.1. was elected in the course of the
reporting period to be an Associate Fellow of the _

American Institute of Aeronautics and Astronautics,

ond also a member of the Advisory Committee of its St. Louis chapter.




Finally. we are glad to report that our direct contacts and co!ldbbrcﬁon with various elements of
the . : . '

United States Air Forée

have been increasing and it seems that 6ur group is becoming progressively more useful to
them. In this regard, we can list the tollowing accomplishments for the period of this report:

1. Several working visits by USAF/MAC personnel at our facilities; and severat visits by us at

: : Scoit Air Force Bawe, ‘
in order o discuss reserch problems and resuits attained by us. (See attached lefter by
Col. J.D. Graham, and the page after it.) '

2. Voluméer Service Agreement between Scott AFB and Washington University, as
proposed and implemnented by the P.I. under this Grant.

" 3. A Washington Univers'ny - MAC Intemn Program's description.

4. The nomination of the P.I., Dr. Ervin Y. Rodin, to membership in the AF Scientific Advisory
Board. by Lt. General A.J. Burschnick.

5. We also list here the Scott AFB/MAC operational projects on which we are currently
working: : ‘ S

Closure Optimization
Defonse Courier Service
. Aeromedical Evacuation

6. Finally, we should also mention in this section that we are making excellent progress on
the development of integer constraint relaxation paradigms, which will be particularly
useful for the KORBX computer of Scott AFB

Finally, we should mention here that. in addition to our previous good working relationship with
Rockwell International, we have also developed close contacts and mutual interests with
McDonnell Douglas and with Emerson Electiic. Scientists and engineers from these companies
now regularly visit with us; one such group visit took place in conjunction with our full-day
presentation for visitors from :

HQ, Strategic Air Command.

‘We are aftaching a one-page informational cheet about that ciso.



ANNUAL TECHNICAL REPORT EXECUTIVE SUMMARY

This is the annual report for the second year of our current three-year grant: thus, several
of our major projects are in the midst of being developed. It may be appropriate, therefore, to
begin this report with brief descriptions of those projects that we expect to conclude in the course
of the coming year. There are actually three such projects, each of which will become a doctoral
dissertation under the guidance of the Principal Investigator:

1. Polyhedral Computations For Many-To-Many Routing Problems;
Applications To Air Transport;

2. Artificial Intelligence Methodologies In Control Systems;
3. System Identification With Dynamic Neural Networks.

We begin our report by providing brief descriptions of the current status of our research
- for each of the above subjects.

Several of our projects have their genesis in our collaborative efforts with the CINCMAC
Analysis Group of HQ/MAC at Scott AFB. The formal arrangement of this collaboration was set
out in a Voiunteer Service Agreement between 375 MSSQ/MSCS Scott AFB and Washington
University, the details of which were included in our annual report last year. During this past
year 2 groups of two senior students each, and one group of thrée students performed studies
relating to the following MAC problems:

1. Defense Courier Routing Problem;
2. Closure Optimization;
3. Operational Stipport Aircraft Vehicle Scheduling Problem.

- We presented these reports to the technical staff of the CINCMAC Analysis Group in the
course of one of our regular meetings with them; in fact, we also presented to them an entire
written report about the first two of these, with copies also provided to AFOSR. For this reason,
we are including in this report only the first few pages of that transmittal. However, we are

- attaching here a copy of the third and shortest report, which was not submitted to the AFOSR.

' It may be appropriate to mention that a fourth senior student group was also working on
- a project related to this grant (but rot related to our Scott AFB onented work). Only the cover
page of their report, entitied

Situation Assessment In Medium Range Air Combat,

is included in this Annual Report.




Several of our research results were prepared in the course of this past year for
publication. We are including some of these in this report. The publication on

i Adjacency of the 0-1 Knapsack Problem,
is a byproduct of our work on Sem ang‘ig Control In Continuous Systems: Applications To Aerospace

Problems,, which was presented in last year's Annual Report. The next item,
ii. Differeﬁtial Games and Neural Nets,

was developed jointly with McDonnell Douglas Missiles Systems Company scxcntlsts, anditisan
ongoing project and collaborative effort.

Our attempts to utilize neural networks in control, optimization and differential game
type problems led us to the realization, that much more powerful, self-tuning networks of this
type should be developed. This led to our first report on

iii. Neural Networks With Local Memory For Control Systoms,
which is our next enclosure.

We reported last year on our work on Tactical Air Combat Maneuvers: Recognition And
Guidance Via Neural Networks. This past sear we attempted to utilize that same technology, to

identify the output of an arbitrary "black box". A first step in that direction was our next
included item, consisting of our work on

iv. Character Recognition: A New Approach Using Neural Networks.
The last item in this section is in fact the longest one: a detailed report on the
V. Application of Semantic Control To A Class Of Pursuer-E_Vader Problems.

-This was a project which we undertook jointly with scientists from the ESCO

Corporauon From our point of view, the importance of the research here was in proving the

feasibility of creating a rule based expert system, which is capable of ¢-""ing on exact optimization
algorithms as subroutines, and which can be implemented on small computers. This is still an
ongoing project: we expect to provide further results in next year's report. (Note: we are not
including here the lengthy appendices to this work, which consist of detailed computer listings.)
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coenter for Opuanuzation and Semantic Control

Friday, January 31, 1992

Dr. Neal Glassman
AFOSR/NM

Bldg. 41C, Bolling AFB
Washington, DC 20332-6448

Dear Neal:

As | may have mentioned to you in the past, | am always trying to get as many

undergraduates as possible to get involved in our various research projects.

Some of these result in nice outcomes ond some are just so-so.

During the past year | encouraged cne such undergrcduote to try his hand at
using neural nets for a physics related problem. Since his results were pretty nice,

 ldecided to send you and Arje a few copies, enclosed here.

With belated good wishes for the new year and best personal regards,

Sincerely yours,

Ervin Y. Rodin
Professor and
Director, COSC

enc.: 3 copies of Teachirg Neural Networks Nuclear Physics

Washington University
Campus Box 1040

St Louis, Missouri 631394899
Tel: (314) BR9-600™, -5806
FAX: (314) 726-4434
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TAHINGIOS UNIVERNTY I STIOUR

Center for Opunization ad Semantic Control

Monday, June 1, 1992

Dr. Arje Nachman
AFOSR/NM

Bldg. 410, Bolling AFB
Washington, DC 20332-6448

Dear Arje:

Since a portion of our research under our present grant involves the tuning and
utilization of neural networks, and since we have made some nice strides in that

~ direction, we decided to publish some of our results related to this area. So, to bring this
to your early attention, I am sending you attached two preprints from our Center:

1. System Identification With Dynamic Neural Networks; and
2. Control and Disturbance Rejection With A Dynamic Neurocontioller.

With best regards,

Sincerely yours,

Ervin Y. Rodin
Professor and
Director, COSC

enc.: 3 copies each of 1. and 2. above

cc. Dr. Neal Glassman

Washington University
Campus Box 1040

St Louis, Missouri 63139-4899
Tel: 1 314) 889-6007, -5806
FAX: (314) T26-4434
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\\ \\Hl\( TTON-UNIVERSITY IN-ST-LOULS

center tor Opamizaton Ltd SemanuecCong ol

Monday, July 6, 1992

Dr. Arje Nachman
AFOSR/NM
Bldg. 410, Bolling AFB

" Washington, DC 20332-64484

Dear ‘Arje:

I am sending you attached three copies of another paper, for which support by both

AFOSR 870252 and AFOSR 890158 was acknowledged:

Mancuver Prediction In Air combat Via Artiﬁciql Neural Networks,
by myself and S. M. Amin.
With best regards,

Sincerely yours,

Ervin Y. Rodin
Professor and
Director, COSC

enc.: 3 reprints

cc. Dr. Neal Glassman

Washington Universiry
Campus Box 1040

St Louis, Missouri 63139-4899
Tel: (314) 889-6007, -5800
FAX: (3141) T20-4434
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WASHINGTON-UNIVERSTY [N ST-LOUTS

Cenies tor Gpomezaion cnd semanue ontrol

Wednesday, August 26, 1992

Dr. Arje Nachman
'AFOSR/NM
Bldg. 410, Bolling AFB
Washington, DC 20332-7448
I

Dear Arje:
Iam send}ing ycu attached three copies of a paper, for which support by AFOSR 890158
was acknowledged: '
? ' Adjacency of the 0-1 Knapsack Problem,
_ byD. Gei?st and myself.
With best; regards,

Sincerelygyou:s,

Ervin Y. Rodin
\ Professor and
Director, COSC

enc.: 3 reprints

¢c. Dr. Neal Glassman

Washington University
Campus Box 1040

St Louis, Missouri 603139-4899
Tel: (314) BR9-6007, -5806
FAX: (31-4) T206-4434
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Tuesday, September 8, 1992

Dr. Neal Glassman
AFOSR/NM

Bldg. 410, Bolling AFB
Washington, DC 20332-6448

Dear Neal;

Siptnazaton ad Sermarte v e

My apologies for responding to your request late; however, 1 was out of town when the messages arnived.

So now here is the information for the period requested:

Publications:;

“On Differential Games With Neural Networks” with Y. Wu), AFOSR Workshop of Theory and

Applications of Nonlmear Control, St. Louis, MO, 1991.

"Character Recognition: Qualitative Reasoning and Neural Networks” (with Y. Wu and 5. M. Amin),

Math. and Comp. Modelling, Vol 16, No. 2, pp. 95-104, 1992,

“Collision Avoidance And Low-Obscrvable Navigation nA Dynamic Environment” (with SM. Amin
and C. Ruan), Math. and Comp. Modelling Vol 16, No. 5, pp. 77-98, 1992.

Graduate Students Supported:

Kevin Ruland; Michael Meuscy; James Revetta; Mark Monical.

creradua u uppor
Travis Cusick.
5 socia 'S Sul T
S. Massoud Amin.

External Honors Recived:

Elected Associate Fellow of the American Institute of Aeronautics and Astronautics.

I hope this will mect your requirements.

Best regards,,

Ervin Y. Rodin
Professor and
Dircctor, COSC

W.shington University
Campus Box jte0

S Louss, Missours 641394300
Tl (31 4) BHO-00™, -8R800
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\ \\Hl\( TON UNIVERSITY l\ ST I l\

Conter B Optsanon aid Semugitie ool

_ Wedne'sday, November 25, 1992 -

Dr. /irje Nachman
AFOSR/NM
Bldg. 410, Bolling AFB

Washington, DC 20332-6448

De r Arje:

I am sending you attached two copies of a report, for which support by AFOSR 890158
was acknowledged:

.An Optimization Algorithm With Probabilistic Estimation,

by D. Yan and H. Mukai. A slightly different version of the report wi'l also appear in
the Jourral of Optimization Theory and Applications.

With best regards,

Sincerely yours,

Ervin Y. Rodin
Professor and
Director, COSC

Washington Eaiversin
Campus Box 1040

St Lotats, Missouri 031494899
Tel (3143 RHO-000, .§300
FAX (314) "20-9434
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T vm‘\ TON UNIVERNITY: 1\ STIOUR

Conter ter Optmmzaton and semanie Controd

Tuesday, September 22,1992

Dr. Neal Glassman
AFOSR/NM

Bldg. 410, Bolling AFB
Washington, DC 20332-6448

Dear Neal:

I am sending you attached the program for ANNIE ‘92, a conference in which we are
involved. Our Center is a Sponsor of the Conference; my colleague, M. Amin and I are
on the Organizing Committee; I am chairing a session and we are presenting two
papers. Both of these papers carry acknowledgement of support by AFOSR.

With best regards,

Sincerely yotirs,

Ervin Y. Rodin
Professor and
Director, COSC

enc.: 1 program

cc. Dr. A. Nachman

Washington University
Campus Box 1040

St Louis, Missouri 03139-4899
Tel: (314) B89-6007, -SR00
FAN: (314) 7204434
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Another version of this report was submitted to the Sever Institute of Technology
by the second author, under the direction of the first author, in partial fulfillment
of his requirements for the degree of Doctor of Science.




ABSTRACT

ARTIFICIAL INTELLIGENCE METHODOLOGIES FOR .
AEROSPACE AND OTHER CONTROL SYSTEMS

Artificial intelligence methodologies have been applied to the modeling and
implementaticn of cortrol systems and differential games problems. To be more specific,
artificial neural networks, a multiple instruction multiple data parallel processor tuned by
connection weights, are used to model a control system or used as an identifier/controller
which functions as a mapping between two information domains. Based on a new
paradigm of neural networks consisting of Neurons With Local Memory (NLMs), the
representation of a control system by neura! networks is discussed. Using this
representation, the basic issues of complete controllability and observability for the
system are addressed. A separation principle of learning and control is presented for
Networks with NLMs (NNLM). The result shows that the weights of the network will
not affect its dynamics. The principle may be utilized to prespecify ti.e steady state
properties of the system. Modeled by NNLM, the resulting system is a typical nonlinear
one which, through rigorous mathematical analysis, is shown to be locally linearizable
via a regular static state feedback and a nonlinear coordinate transformation.

Significant advances have been achieved in applying differential gamzs theory, a theory
dealing with most of conflicts in daily life, economics, military affairs, etc., to practical
problems. In this dissertation, this theory has been thoroughly addressed from a new
point of view. A configuration, based on the paradigm of semantic control, is proposed,
which can be used to derive two paradigins of differential games with neural networks.
Generally, two neural networks are used in each of these two paradigms. One network is
called the neural-identifier and it is used to identify the control strategy of one's opponent.
The other one is the neural-controller which, taking the estimate of the control strategy of
one's opponent, outputs the control value for oneself. The issue of existence of solutions
is discussed. To demonstrate the effectiveness of the method, a simulation experiment
was carried out and studied for a pursuit-evasion game problem.




In Chapter 3 a learning control algorithm is deveidped. The algorithm can be used to
evaluate the weight of a neural controller in the paradigms proposed in the chapter or in

the control systems. Using the learning control algorithm, we study the aircraft control
problem in the presence of wind shear. o

In Chapter 4 we shall discuss another aspect of artificial intelligence techniques in control

systems: rule-based system in a class of pursuit-evasion game problems. The pursuit-

evasion game problems can be converted to classical optimal control problems. The
optimal control solution is obtained. The solution offers several advantages such as

significant time-saving in implementation. Further research directions are addressed in

the last chapter. ' '
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ARTIFICIAL INTELLIGENCE
METHODOLOGIES FOR
AEROSPACE AND OTHER
CONTROL SYSTEMS

1. Introduction

Much effort has been directed during the past two decades in attempting a merger
of the areas of Artificial Intelligence 'and Automa;tic Controi [4, 24, 56, 79]. Such
a merger would combine the rigorous, precise, and analytical foundation of auto-
matic control theory with the heuristic, qualitative and .emcient reasoning aspects
of artificial intelligence. Sﬁch a merger would provid'c a praéti;‘al. powerful mech-
~anism and framework and effective computational tools for the‘m'o/dcling and
analysis of fuzzy, time-dependent, noisy ang‘l};(;:m‘tain models (ioscribing plvl_\'sicavl -
phenomena. The theory and applications of such a merger does "'1‘2“1 the power
of the efforts in this area for modeling various real processes {23, 76. 77. 79}, This
study attempts to combine the techniques of these two areas to develop new tools,
to enhance the analysis of a mature control theory, and to apply these techniques

to real-time processes. We begin in the next section to discuss some basic issues

concerning the combination of artificial intelligence and automatic control.




1.1. Intelligent Control

In this section. we shall summarize the history. research efforts. and application
. aspects of intelligent control. In particular. we shall explore its relationship with
adaptive control. semantic control [76], more closely telated expert control [6].

and knowledge-based control systems [87].

Among others. Saridis {79 gave a formal definition for what he termed an

[ntelligent Machine:

Definition 1.1 [ntelligent“\lachines are machines that are designed to perform

anthropomorphic tasks with minimum interaction with a human operator,

|

Intelligent control then is the function that drives an intelligent machi;ne. In-
telligent control can also be considered as a fusion between mathematical and
linguistic methods and algorithms applied to systems and processes. Intelligent
control, which is hierarchically distribut.ed. is composed of three basic yevels of

control: the organization level, the coordination level, and the cxccutiLn level

H : T
(see Figure 1.1). owesee]
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Figure 1.1: Hierarchical Intelligent Control System




The organization level is designed to perform such operations as receiving and

reasoning with commands, planning. making lfigh level decisions from long-tenm
memories. providing feedback. and exchanging long-term' memory. .Prohabilisric
models are provided for a mechanizm so that it can select an apptopriate task for
a given command. The concepts of commands. task commands, events, activities,
random’ variables as<ociated with events, and functions are then introduced to
~pecify analytically the functions of the organizer. This level which is designed to
imitate functions of human behavior, may be treated as an element of knowledge-
based systems. Thus. knowledge representation. knowledge flow. and knowledge

processing and management are the main activities on this level.

The coordination level is an interactive structure serving as an interface be-
tween the organization and execution level. It formulates the control problems
associated with the most ;;rol)able. complete and compatible plan formulated in
the organization levels. Several individual coordinators are associated with spe-

cific hardware execution devices. Each of them performs a pre-specified number

- of different functions. Two types of feedback information exist for each coordi-

nator: [i] off-line feedback information which is fed to the organization level and
is stored in long-term memory: and. {ii] on-line or real-time feedback information
which is issued by each executor in the execution level, received by the coordina-
m.r and stored in shofﬂerm memory. The on-line feedback information may also
be used by other coordinators for the evaluation of the overall acerued cost of the

coordinate level,

The execution level executes the appropriate control functions. In particular,

optimal control theory with a non-negative functional of the systems states or




with an entropy H(u) for a particular control action u(x. t) is discussed by Saridis

[79]. However, various control schemes may be employved on this level.

To represent the uncertainty which may be present on each of these levefs.
Saridis introduced the concept of entropy. a probabilistic measure of uncertainty.
All levels of a hierarchical intelligent control are measured by entropics and their
rates. With the introduction of entropy. the theory of hierarchically intelligent

controls may be stated as the following:

The theory of an Intelligent Machine may be postulated as the mathematical
problem of finding the right sequence of decisions and centrols for a system struc-
tured according to the principle of increasing precision with decreasing intelligence

(constraint) such that it minimizes its total entropy.

Although Saridis is the first one who has worked on Intelligent Control Theory
in a systematic way, and has attempted to to lay a mathematical foundation for
the theory, other people have also actively worked on this area. Among these
people are Astrém (3], Fu [24], Wiener [99] and Meystel [39. 60, 61, 62]. In
(3], Astrém discussed the issues of intelligent control from a more practical and
application-oriented point of view. Primarily aiming at PID Controllers, Auto-
matic Tuning (e.g.. relay autotuner). Adaptive Control. and Expert Control, he
reviewed briefly the history of automatic control. He explored the realistic issues
of practical real-time processes. such as sampling period. model structure, uncer-
tainty, disturbance, and, in favor of PID controller and self-tuning regulator, he
discussed the ideas and ap;;lication areas of Automatic Tuners and Adaptive Con-
trollers. Unlike Saridis, who combined the techniques of Al, Operational Research
and conventional Control Theory and treated the issues of intelligent control in a

o
more analytical and systematic way, Astrém mainly discussed the problems of an




automatic tuner and adaptive controller, implying that the virtual part of intel-

ligent control lies in the system’s capacity tc adapt to a time-varying/unknown
environment, be convenient to end-users, have an automation of regulator param-

eter tuning, and assume less prior information for the system to be controlled.

Aithough a common point can be observed for both Astrém and Saridis -
adaptation to unknown/time-varyving em‘ironmeﬁts - :\strfim embhasizes incor-
porating more human intelligence into the process controllers as in the position
of an instrument engineer while Saridis views the intelligent control as an overall |
structure of the whole organization as in the position of a Chief Executive Officer.
In this sense. the category that Ks;rém discussed as intelligent control falls into
what Saridis termed “Executive Level”; however, Astrdm treated various issues

in a more detailed, practical and realistic way.

It is interesting to know that there exists another type of control system ca-
pable of intelligence: an Expert Control System (see Figure 1.2). Aa intelligent
control system with the function of supervision and containing a knowledge-base,

0 .
is categorized by Astrém [5. 6] as an Expert Control System. The object of expert

control is to encode knowledge representation and decision capabilities to allow

for automatic intelligent decisions and ‘recommendations rather than by prepro-
grammed logic. The development of an expert control system is motivated by
the fact that heuristics plays an important role in PID regulators. Thus. a more
efficient, robust, yet cruder way of implementing heuristics may be needed. De-
signing an expert control system, which has the capacity to orchestrate a range
of different control algorithms for different control goals, seems to be the right

answer. Analogous to an Expert System in the field of Artificial Intelligence, an




expert control system consists of the system data base. the rulebase. the inference

engine. the user interface. and the planning process.

==
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Figure 1.2: Block Diagram of An Expert Control Systems

[n an expert control system. the system data base contains constraints on oper-
ational sequencing; facts (or staiic data such as sensor measurements, tolerances.
operating thresholds. etc.); evidence (or dynamic data such as sensors. instrument
engineering reports. and laboratory and test reports); hypotheses, which are gen-

erated and stored in the data base, e.g., various state estimates; and goals (either

static goals or dynamic goals: static goals include the wide array of performance

objectives: dvnamic goals are those established on-line).

The fule-base of an expert control system contains production rules. such as
if-then rules. The conditions of the rules are usually facts and hypotheses from
the data base while the results of the rules are the actions. such as activation of
controllers. The rules may also be viewed as functions operating on the strategies.
The inference engine has the same meaning as its definition in the traditional

expert system, which functions according to different strategies.

An important element of an expert control system is planning. In view of the
difference between the conventional control systems and the expert control sys-

tems which deal with a process in a more ambiguous. more qualitative way, the
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| planning process of an expert control system should be implemented according to
this difference. Various algorithms are provided for supervision. analysis and sig-
nal generation. An expert gontrol system, which separates the control algorithms
_ from the logic, decides when to use a particular algofithrh. The planning may
be viewed as an action of search in a logic network. forming a path to reach the |
goals. Its function involves issuing a command to change the production goals

and change the process with its requirements.

Comparison of an expert control system with an autotuner, which is what
. |

o ’ J . . 4 s 3 -
Astrdm meant by an intelligent controller, is given by Astrém in [3]. Although

both schemes can tune thefparameters for a conventional controller, e.g. a PID
controller, an expert control: system usually has a more efficient way of interacting
with a human operator bec$ube of its supervision functionality, linguistic interac-
tion capacity, and listing capacity. Thus, depending on each individual application

problem, one can choose an appropriate scheme of control system structure.

Ancther effort at combining Al techniques and control theory has been in
developing the knowlcdge-based nested hierarchical controller [62] for the analy-
sis and design of autonomous robots [59]. The structure of a multi-resolutional
(pvramidal) nonhomogeneous system of knowledge representation interacting with
a planning/control system was introduced by Mevstel. A structure of this type
gives not only unique capabilftiés of knowledge representation but also a number
of powerful algorithmic capabilities, such as a joint planning/control structure,
planning in traversability spaces, minimum-time dynamic navigation, knowledge-
based control, and others which are promising for autonomous intelligent ma-
chines. This type of controller, which employs joint multi-resolutional planning-

control procedures, algorithms of enhanced nested dynamic programming, the




hybrid world representation, and linguistic clauses, has been implemented in an

intelligent mobile robot IMAS-2 [39].

| Knowledge for the choice of control is represented as a descriptive structure in
a fuzzy linguistic representation space (FLR-Space). This structure is obtained in
the form of a semantic network from a set of texts. The nodes and the relations
in the structure can be evaluatec numerically. Time behavior can be asséciated
with the structure, and hénce. a function or a sequence f(tg).---, f(ts) can be
considered as a trajectory of motion starting with the initial state and ending at
a fixed state. Although other control schemes can be considered, so far only cost-
optimal control processes have been studied in (59]. The coﬁtrol strategies are
obtained via a sequence of Hamitonians H, D H, O --- D H, for each of the levels
of the hierarchy. The algorithm of nested dynamic programming provides the
major mechanism for obtai.ning the control strategies. Nonhomogeneous models
which are noi in the form of a system of algebraic and/or differential equations 2re
used for various re'as'ons[59]f If the analytical model is unknown, one can usually
organize a pseudo—analyﬁcél model using tabulated data. It seems na.tﬁra.l to

consider the use of production systems (PS) for matching the linguisﬁc nature of

the original world description.

Recent works by Rodin [76] on Semantic Control Theory have been successful
in several cases, such as [25. 77]. As another important and unique approach to
combining Al techniques and control theory, Semantic Control theory‘allows: (1)
the system to adapt to varying/unknown environments, (2) enhancing human-
machine interaction, and (3) for on-line planning/goal selection. A semantic con-

trol system usually consists of three parts (see Figure 1.3): [i] Identifier; [ii] Goél
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Selector: and [iii] Adaptor. Their functions. when applied to a situation governed

by differential games (for instance), are as follows:

(1) Identifier: The .[denti‘ﬁer block identifies through sensors and a knowledge

base the differential game. parameters. targets (if any) and role of each
plaver. |

(ii) Goal Selector: The Goal Selector solves the differential game chosen by
the Identifier block. The results are the optimal trajectories. barriers and
controls. ‘

(iii) .Adaptor: The Adaptor determines the controls that cause each plaver to

“best” follow the optimal trajectory determined by the Goal Selector.
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Figure 1.3: Semantic Control Paradigm

Applicatiéns of semantic control théor_v in problems of air-combat. a class of
pursuit-evasion game, can be found in {25, 77]. From these applications. one
can see that the theory does provide a powerful, fundamental framework and
mechanism for modeling a real and complex system as well as provide on-line

adaptation to an unknown environment. on-line goal selection and implementation

of lower-level execution functions.
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From above., we have 'seen that several intelligent con'« ! schemes have been

proposed in the area of intelligent control. They are Intelligent Control by Saridis

[79], Automatic Tuniﬁg by Astrém (5], Expert Control Systems by Astrém i6, 3],

Knouwledge-based .\'etgd. Hierarchical Controller by Meystel [6-] and Semantic
Control Theory by Rodin [76]. These schemes are proposed from different points
of view to deal with many complex practical systems. They have been successful
in a variety of applications 3, 23, 39, 77, 79]. A common point of these schemes
is their capability of adapting to the changing environment. In other words, ‘the‘y
‘have the so-called learning capacity. Thus, it is nature to consider the mechanism
to realize this learning cépacity. Neural networks for control systems seem to be

ideal for such mechanisms. In the next section, more details about the current

research efforts in this area will be given.
1.2. Neural Networks for Control Systems

In this section. a brief review and survey is given concerning current works and
expected future research trends in the area of neural networks for control sys-
- tems. The topics to be discussed include the most recent wprks in this area,
different types of neural controllers and various applications of these controllers.
They are [i] Learning Controllers, {ii] Recurrent Neural Networks for Control Sys-
tems, (iii] Reinforcement Learning Controllers. {iv] Relationship Between Adaptive
Controllers and Neural Controllers, [v] Modeling and Identification, and [vi] Cere-
bellum Model Articulation Controllers. Most of the works focus on applications
of neural networks in known/unknown nonlinear systems with/without noise, for
the purpose of either control or identification. Although this discussion is far from

complete in covering ail aspects of the work in this area, it does indeed include




Il

the major trends at the current time. In what follows. we shall discuss different

topics separately.

Learning Controller

Most recently, Hoskins et al [36] presented an iterative constrained inversion tech-
nique to find the control iﬁputs to a plant. Although the nature of their work
ié similar to the work in [26]. several advantages are observed in [36]. Firzt. the
proposed controller responds on-line to changes in the plant dynamics. More in-
terestingly, the proposed controller is applied to generate a neural-network-based
model referenée adaptive controller (NN;;\IR.AC), which is Llsécl to control the
spring—mass-daﬁber system in which the pbsition respon- “a reference com-
mand is the same as a targét controller. Second, by removing aral network
from the direct feedback path and replacing direct feedback with aﬁ eétimate and
optimization, Hoskins is also the first to attempt to consider the analytical tveat-
ment of the siability of the closed-loqp system, which is important but has no
mature solution in the current Iitcrature. Third, he also considered the issie of
“Smooth Control”. “Smooth control” is generally required in some applications.
That is, the control value computed at the current step should not vary too mnch
from the control value at a previous step. This is particularly trug in robot control
problems. For the redundant robot control problem. one requirdment is to avoil
abrupt changes of the gesture in response to the slow end-effect inovement of the
arm. This requirefnent is not satisfied in previous works applying neural networks
for the inverse kinematics problems. Although a two-stage learning strategy may

be an answer to this problem, the works by Hoskins and his coworkers did show

an advantage in this regard.

e YT . .
7 , .




Reinforcement Learning

Reinforcement learning is one of the major neural network approaches to leérning
control [43]. Although these methods originated from studies of animal learning
and in early Ieérning control works [53], they have now been an active area of
research in neural networks and machine leéming. In [43], Sutton, Barto and
Williams explained these methods as a Synthésis of dynamic programming and
stochastic appreximation methods and focused their discussion on the _Q;learning
method which was originatly presented in [94] by Watkins. An active-critic learn-
ing system contains two distinct subsystems: one to estimate the long-term utility
for each state and another to learn to choose the optimal action in each state.
A Q-learning system maintains estimates of utilities for all state-action pairs and
makes use of those estimates to select actions. They viewed these methods as
an example of a direct adaptive obtimal control algerithm, i.e. a.s‘ an on-line

Dynamic Programming method and a computationally inexpensive approach to

-direct adaptive optimal control, which determines the control without first form-

ing a system model.

Recurrent Neural Networks for Control Systems
Also recently, Nikolaou et al {73, 74] published their research for identifying and
modeling a chemical process. In their work. a recurrent neural network consisting

of dynamic neurons whose behavior is governed by the following set of differential

equations
dz; _  z;  Fi(T,wijz;)  u
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where i = 1, 2. ..., n, is used to model chemical processes with severe nonlinearity.
After the network has been said to approximate the process well enough. a non-
linear contholler based on the works of Isidori [38] is used to control the chemical
procéss so that the resulting system is linear. and thus. various synthesis methods
for linear systems can be used for the purpose of control. Their approach has
been shown to be successful by applying the network to a model and identifving

a continuously stirred reactor (CSTR).

Although their .work still falls into the category of identifving and modeling
a system (process) utilizing the interpolation property of a neural net\vork.,‘ one
of the unique features of their work lies in using the internal information of the
neural networks, namely, using the states of_. neurons to construct the nonlinear
controller. This approach reveals a new aspect of the work in the 'afea for"neura.l
networks for control: how to efﬁciently and effectively makg use of the intelligence
of the neural networks themselves for control systéms or how to utilize the internal
information of the network, instead of viewing the network as generic mapping, so

that the memory capacity and learning capacity of neural networks can be more
fully utilized.

It turns onvxytwtivlrat, in the current literature on neural networks for control sys-

" tems, very few people put aﬁ emphasis on this point of view. A tremendous
amount of work has been done using feedforward neural networks as geheric map-
pings, and then demonstrating that such a mapping, now replaced by the fancier
name “neural networks”, worked fine for some particular problems {3, 20, 70].
Typical work has been in the inverse kinematics problems {30, 65]. If the plant is
known a piriori, teaching the inverse dvnamics of a planf to a feedforward neural

network appears easier since the input-output behavior of the plant can be utilized
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as teaching signals. However, in contrast to the inverse kinematics problem. in
most of constrained contro! upplications. the furnctional expression of the forward
mapping ¢ is generally unknown. In that case, a two-stage learning strategy has
been proposed in [21. 42. 46, 70]. In the two-stage learning strategy. two neural
networks are used. One is trained to learn the forward mapping or dynamics of a

nonlinear system. The other one is trained as a neural controller. The approach

seems promising for this kind of problem.

Therefore, the works by Nikolaou et al [73, 74] have offered a unique approach

in this direction.

Relationship between Adaptive Controllers and Neural Controllers
There is a common point between well-developed Adaptive Controllers and Neu-

ral Controllers: adjusting their parameters cn-line or recussively. Thus, in many

" cases, neural controllers are very closely related to adaptive controllers. Due to

this reason, it is natural to consider neural controllers and adaptive controllers to-
gether and explore their relationship. Among researchers working in this particu-
lar area are Narendra[68, 69], Hoskins [36], Chen [14], Karakasoglu {45], Guha [31],
Bialasiewicz {11], and Sztipanovits [89]. Narendra explored how well-established

adaptive identification and control techniques can be applied to the analysis and

synthesis of dynamic systems, which contain neural networks as subsystems. Dif-

ferent combinations of neural networks and linear systems are considered as mod-
els for identification and adaptive control. Detailed analysis and discussion abéut
those issues are given by him and Parthasarathy in [69]. Chen [14] used a dif-
ferent approach to neural networks for self-tuning control systems. Two neural
networks are used for approximating the nonlinear terms of a NARMAX model.

The weights were adjusted such that the error between the output of the actual




plant and the output of the neural network. and the error of the output signal of

the plant and the predefined signal tend to be minirnized.

Unlike a self-tuning control scheme which usually requires a prioriinformation
such as process model order. deadtime, and disturbé.nc_e characteristics as well as
the assumption of linearity of process. a neural controller has the advantage that
it usually does not require a priori information about the process to be controlled.
Comparisons have been made between the two schemes in {14, 48, 50. 91]. and

attempts have been made to combine techniques in these two areas (36, 48]

Modeling and Identification

There are many neural networks applications for modeling and ‘identifying non-
linear systems [1, 15, 28, 51, 74, 85, 86]. Most of the work on reural networks for
identification and modeling has bgen in using the property of univeréal approx-
imation of feedforward networks (e.g., [16, 35, SS, 98]). A typical scheme is to
use the error between the output of the network and the output of the unknown
system to update the connection weights of the network at each step. Various

optimization methods may be employed to reduce the output error by adjusting

tLe interconnection weights. Among them are the gradient descent algorithm,

the conjugate gradient algorithm and Davidson's algorithm. Depending on how
the weights ace updated. there are two different schemes for training the neural
networks: Pattern Learning [78. 97] and Batch Learning {32, 96]. Pattern learn-
ing is the method in which the weights of the network are adapted immediately
after each pattern is fed in. The other method, however, takes all the data as
a whole batch, and the network is not updated until the entire batch of data is

processed. Qin et al [75] discussed the relationship between Pattern Learning and

Batch Learning for dynamic system identification. Four basic learning methods

-
7
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have been used for their work. depending on the sctemes of the system i sntifi-
cation using neural netwcrks. In [69]. Narendra and Parthasarathy discussed the
use of neural networks for dynamical system identificatior. and control. Gener-
alized Neural Networks have been proposed. which are various combinations of
linear dynamic systems and féedforward networks. Chen et al [13] have developed
a prediction error algorithm for system identification, in which the networks are
prima‘rily used as universal approximations for nonlinear systems.

-

A unique approach has been employed by Specht in [85]. A one-pass neural
network learning algorithm similar to [84] has been used = estimate continu-
ous variables. Depending on the variables used. the networks can be utilized for
prediction, modeling, mapping, and interpolation. or as a controllex;. Specht dis-
cussed the memory-based network that provides estimates of continuous variables

“and converges to the underlying (linear or nonlinear) regression surface. This net-

work, called General Regression Neural Network (GRNN), is a one-pass learning

algorithm with a highly parallel structure. Thus, the network features fast learn-

ing that does not require an iterative procedure and a highly parallel structure. -

Among the advantages of GRNN, the network “learns” in one pass through the

data and can generalize from examples as soon as they are stored.

Although most of the work in this direction is based on the property of univer-
sal approximation of feedforward nenral networks. several specific neural network
architectures have been used: [i] Feedforward Neural Networks (e.g., {1, 15, 51]):
[ii] GRNN [85]; and [iii] Recurrent Neural Networks (e.g., [74]). Different archi-

tectures of neural networks find their use for various purposes of applications. For

example, the neural networks proposed by Nikolaou et al have the advantage that
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the internal variables can be readily used for constructing a linearizing controller

such that the overall system is linearized.

Likewise. the neural network approach for identifying and modeling nonlinear
syqtems has the advantage that no a priori infolrmation about the model structure
is needed. Important works for modeling and identiﬁcﬁtion using neural networks
can be also found in [93, 97].
Cerebellum Model Articulation Controller (CMAC)
Another tvpe of neural network for control systems which is worthy of mention-
ing is the so-called Cerebellum Model Articulation Controllers (CMACS) [67].
It was invented in 1973 by James Albus (2], then with the .\'atio‘n'al Bureau of
Standards. Albus's scheme was based on a model of human memory and human
neuromuscular-control principles. The term Cerebellum Model Articulation Con-
troller, or CMAC, fs often interpreted to mean Cerebellar Arithmetic Computer.
CMACSs were originally developed for robot control, a;nd they have béen popular-

ized by a group at the robotics laboratory of electrical and computer engineering

at the University of New Hampshire under the direction of W. Thomas Miller IIl.

CMACs enjoy the reputation of having a much faster training time (several
orders of :lagnitufle) than Feedforward Neural Networks (FFNNs) trained by
backpropagation [13], yet give the same performance as FFNNs. This property is
particularly useful for real-time learning and control problems, e.g. in an adap-
tive flight-control system. CMAC neural networks are aiso capable of effectively
organizing and implementing a multi-dimensional function approximation in a

computationally efficient manner using traditional computing architectures.
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A unique approach to neural network controller design has been employed by
Kraft and Campagna [50] to study the performance of this type of controller in
a nonlinear system corrupted with noise. The basic idea behind their work is to
generate an approximation to a characteristic system surface from input-output
measurements and then use the surface as feedforward information fo calculate
the appropriate control signal. The characteristic system surface is. in fact. the
system equation representing the known/unknown plant to be controlled. If the
values of the system parameters were known, the surface could be precalculated
and stored in memory. Then, given the control objective (i.e. the desired position
in memory). it would be possible to look up in memory the correct control signal.
When the system parameters are unknown, the surface must be “learned” from
input-output data in real time. The controller, similar to the work of Miller [66],
uses a memory update algo.rithm which updates the values of a group of memory
locations near a selected m.emory cell during each control cycle, using the concept

of generalization.

Kraft and Campagna [50] compared this type of neural network controller
with two traditional adaptive control systems: Self-tuning Regulator and Model
Reference Adaptive Congrol]ers (MRACS) in a study of the behavior of a first-
order system with/without nonlinearity, presented with/without noise. Results
showed that the CMAC neural controller performed equally well in the presence
of noise, and worked extremely well for a nonlinear system, compared with the
two traditional adaptive controllers. Although, unlike MRACsS, this controller has
no guarantee for stability analysis, implementation speed comparisons favored the
neural network approach because the control signal can be generated virtually as a

table look-up procedure. Moreover, with the neural network controller approach,

no a priori information about the system to be controlled is needed. Thus, the
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neural network controller is suitable for a wide class of nonlinear systems. Above
all, their results indeed reveal some interesting aspects of neural network approach

for control systems.

Slore recently, using B-Spline receptive field functions in conjunction with
more generai CMAC weight addressing. Lane et al [52] developed higher-order
CMAC neural networks that can learn both functions and function derivatives.
The number of weights addressed in computing a network output grow expo-
nentially with the number of input dimensions. Back~propagation BMACGs with
higher-order reception field functions on only selecéed network inputs and Spline-
Net network architectures were proposed as potential solutions to problems of
more modest §ize. producing piecewise linear and additive function approxima-

“tions. -
1.3. Organization of the Dissertation

The purpose of this study is to model and to analyze control systems aided by
neural networks. The approaches attempt to explore use of the features of parallel

architecture in control systems. It is organized into five chapters.

The second chapter is a study in modeling control systems using neural net-
works which have a highly parallel structure and are capable of learning and
storing information. The study is in the spifit of fully utilizing the intelligence
of the networks and the pattern of prdcessing information in parallel inside the
networks. We go beyond using the universal approximation property of neural
networks, and also consider the internal state information of the recurrent neural
networks so that a control system can be modeled usiné this highly parallel struc-

ture of computation mechanism. Based on a new paradigm of neural networks
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consisting of Neurons With Local Memory (NL\s). the representation of a control
system b\ neural networks is discussed. Using this representation. the basic issues
of complete controllabilitv and observability for the system are addressed. A sep-
aration principle of learning and control is presented for NNLM. The result shows
that the weights of the network will not affect its dynamics. The principle may
be utilized to prespecilfy the steady state properties of the system. Modeled by
NNL)LL the resulting system is a typical nonlinear one that. through mathematical
analysis, can be shown to be locally linearizable via a regular static feedback and
a nonlinear coordinate transformation. Although theorectical results in Chapter
2 are not directly used in Chapter 3. they do have potential applications for the
differential game problems. For example, pursuit-evasion games can be modeled

by NNLMs while controllers can then be designed using various techniques.

The third chapter of the dissertation is to develop another new paradigm and
tools for applying neural network techniques in traditional differential game prob-
lems. During the past few years, attempts have been made to utilize the powerful
qualitative reasoning and heuristic search capacities in the area of artificial intelli-
gence to overcome the difficulties of applying differential game theory in practical
problems. such as cumbersome computations [77. 32. 93]. A configuration, baééd
on the paradigm of Semantic Control. is proposed. It can be used to derive two
paradigms of differential games with neural networks. Two neural networks are
used in each of these two settings. One network is called the neural-identifier
which is used to identify the control strategy of the opposing player. The other
one is the neural-controller which, taking the estimate of the control of the other
player, outputs the real control value for its own player. The issue of existence

of solution is discussed. To demonstrate the effectiveness of the method, a sim-

ulation experiment is carried out and studied for a pursuit-evasion problem. In
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this chapter, a learning control algorithm is develbped. The algorithm can be
used to evaluated the weights of a neural controller in the paradigms proposed in
the chapter or in other control systems. Using the learning control algorithm. we

study the aircraft control problem in the presence of windshear.

The fourth chapter ié a study of optimal control and optimization problems
in the Layered Defense Pfoject. The Layered Defense .Projec.t is a l:o'opelrative
effort between the Center for Optimization and Semantic Control at Washington
University and the Electronics and Space Corporation. Based on the semantic
control theory, the project is to model and study a class of pursuit-evasion gzime
problems. The third part of this dissertation discusses the optimal control prob-
lems arising from the project. Classical line-of-sight coordinates are employved to
model the game situation. Based on a similar study in [18], an optimal control
law was derived for the one-pursuer and one-evader case. A non-derivative opti-
mization method is used for finding the optimal initial costates for the optimal

control law.

The fifth chapter summarizes our work. The main contributions of this disser-

tation are enumerated and future research directions are presented in this chapter.
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2. Neural Networks Approach to Control Systems /

This chapter presents new approach to neural networks for control syStems. Based \

on a paradigm of neural networks - NNLM - consisting of neurons with local
memory, a control svstem represented by neural networks is discussed. With this
representation, the basic issues of complete controllability ah_kd observability for
the system are addressed. For the first time, a separation principle of learning and .
control is presented for NNLM, and the principle shows that the weights of the
network will not affect its dynamics. Because of the nonlinearity of the network. it
is natural to consider the issue of linearization around a local equilibrium point.
A detailed and rigorous analysis of the local linearization via a regular static

feedback and a nonlinear coordinate transformation is given in the final section. e

2.1. Background

This beginning section will briefly recall three types of neurons commonly used in
feed-forward and recurrent ﬁeural networks. They are McCulloch-Pitts neurons.
Grossberg's neurons and Hopfield's neurons. The well-known MeCulloch-Pitts
neurons, which take the weighted sum of inputs and give the output through a
transfer function, are the basic elements in feedforward ncural networks. They
have been widely and successfully used, and their structure is well known. Al-
though there are various architectures to connect the neurons (see the structures
in backpropagation networks, Kohonen networks and Hopfield networks), the ba-

sic elements — the neurons — remain the same.
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When he studied the famous dog-saliva-food biological phenomenon. Gross-

berg proposed a new type of learning rule, known as the Grossberg Learning Law,

as well as a new type of neuron in order to attempt to mathematically formulate

Hebb’s law. His approach, in turn, attempted to explain the classical condition-

ing behaviors discovered by Pavlov. Since we shall not discuss the learning law in

detail, interested readers are referred to [47).

The neurons proposed by Grossherg are not simply of the McCulloch-Pitts
type, as their outputs are described by a different set of equations. Consider a
neuron which has a number of inputs coming from other neurons in the network,
as well as an external input coming from outéide the network. The following

equation describes the dyvnamics of the ith neuron

WO~ ety + 10+ Tt e
5

where y;(t) is the output of the ith neuron, I;(t) is an external input to the ith
neuron, and w; is the weight connecting the output of the ith neuron to the input
of some other neuron. The difference between the McCulloch-Pitts neurons and
those proposed by Grossberg is clear since “dynamics” are incorporated in each
of the Grossberg neurons. These dynamics are represented by a positive const(‘"mt.
a which controls the decay of the output in the absence of any other input. Thus.
a may also be called a forgetting factor. This type of nenron. together with
Grossberg’s learning law, give a plausible mathematical formulation for llebh's

law and thus form a satisfactory connection with Hebb’s learning theories.

Later (in 1934), John Hopfield proposed a general structur: for a continuous

deterministic model. This structure is known as the Hopfield model. A Ilopfield

model is a two-layer network in which the neurons in the hidden layer are fully
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connected to each other. The input-ouiput relationship of the ith neuron in the

network. realized by an amplifier, is described by the set of nonlinear dyvuamic

equations
du; u;
el Tijv; — — +1;
dt ; 7 T +
J#i
vi = gi(w) (2.2)

where C; is the total input capacitance of the amplifier, Tj; is the strength of the -

connection from the output of the jth amplifier to the input of the ith amplifier,
u; is the input to the ith amplifier, and v; is the output of the jth arﬁpliﬁer. Also.
7; is a resistance value. [; is the sigmoidal transfer function of the ith amplifier.
and g; is the sigmoidal transfer function of the ith amplifier, assuming a negligible
response time. A commonly known property of the Hopfield network is that
the state of the network can be attracted to an equilibrium point corresponding
to a local minimum of the energy function and hence the network can be used
to implement a content addressable memory. Based on this property, Hopficld
networks have been used satisfactorily for traveling salesman problems [33, 34].
for an A/D converter [90], signal decomposition [90], linear programming [90].

and various combinatorial optimization problems [90].

As we shall sce in subsequent scctions.‘the neurons introduced below are difler-
ent from McCulloch-Pitts neurons. Grossherg neurons and Hopfield neurons. In
some sense, they are closest to the neurons in the Hopficld model as they can be
viewed as a discrete-time version of the neurons in the Hopfield model. But unlike
those in the Hopfield model, these neurons are used in a feedforward network in
which the well-known backpropagation algorithm can be employed to change the

weights. More importantly, they are used here in a novel attempt to represent
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a control system by a neural network. In fact. the idea of representing the in-
ternal states as a state vector is not new. Hopfield used the same idea when he
used state vector to construct an energy function in his network. He proved. by
using Liapunov stability theory. that the statéwill é\'cntually converge to a local
equilibrium in state space, which corresponds to a local minimum of the energy
function. The neurons proposed below are used for representing a Eontrd system

and are the basic elements for a feedforward netwerk which. unlike the Ilopficld

~network, does not have an equilibrium.
2.2. Neurons with Local Memory (NLM)

The term, Neurons with Local ;\Ieméry (NLM), comcé from the presence of dy-
“namics inside each of the neurons we are interested in. The incorporatic.: vi
dynamics inside each neuron is the main distinction between these neurons and
the conventional McCulloch-Pitts neurons. As we shall see below, this type of
neural network facilitates much of the subsequent analysis of neural networks for
control sy‘stcms. The incorporation of dynamics in each neuron results in the flow
of outputs from neurons even without any inputs. Thus, the NLMs may also be

termed dynamical neurons or active neurons.

Interestingly. a simiiar idea has been nsed by Nikolaou et of in [73. T4] 1o
identify the dynamics of a continuously stirred reactor (C'STR). In their work.
Nikolaou et al used a neural network whose neurons have the following set of

differential equations

d:t.' '_ T F,(ZJ w,-ja:_,') uw 5 -
dt -_— 7-,’ + T 7,‘ + "7','.9 (--3)

fori =1, 2, .., n. Although their work has been successful in identifying the

dynamics of CSTR, they have not discussed basic issues of a control system such
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as controllability and observability. In this study. we shall discuss the basic issues
of control systems associated with this tvpe cf neural networks in a more analytical

and systematic way.

A typical representation of an input-output relationship for the conventional

McCulloch-Pitts neurons is written as
o= Flgd o), keZ (2.1)

where the y'sand u’s are the outputs and the inputs respectively. Also, Z is the set
of positive integers, the subscript k denotes the time step k, and the superscript

j denotes the jth neuron. A typical form for f? of (2.4) can be written as

[
<t
~

. n] . '
B o= s wivy), (
=1

where s; is a sigmoidal function, and the w;;’s are the synaptic weights.

A basic structure of an NLM is shown in Figure 2.1, where j denotes the jth |

neuron. The quantities yi, u,lc"’, .y utp’” are the output and inputs to the ncuron
at time step k, respectively. Also. =~! denotes the backshift operator and s7!

denotes the inverse of the transfer function for the neuron j.

The output y{ of an NLM can be written as

’rl]
R T WA R . ] e
Vi = °J("J"J (¥1_y) +c’Zu_,,-uL ). (2.6)

=1
where @’ is a scalar whose value represents the dynamics in neuron j. ¢’ is another
scalar. and the wj;'s are the weights of connection from other ncurons to neuron
j. By setting a’ = 0 and ¢/ = 1. we immediately obtain the conventional input-
output relationship for the McCulloch-Pitts neurons. It follows that the input-

output relationship of a conventional neuron is actually a special case of that of

NLM.
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Figure 2.1: Basic Structure of a NLM

An alternative and more informative input-output representation of an NLM

can be given by introducing an internal state variable xx
. 1y
j opd 1,7
T = Azl + ) wiwy,
i=1

yl = sj(c’;r{.), kez, (2.7)

from which (2.6) can be derived easily. The system equation (2.7) is -called the

“node system. Again setting a’ = 0 and ¢/ -=1-in (2.7), we obtain the input-output

relationship of a conventional neuron.

The advantage of the representation (‘2.7) over the roprosentntio.l.\ (2.6) ls
apparent by introducing the internal state 1{ The system (2.7) actually has the
standard state equation and output equation familiar to control éngincers. For
convenience, we still adopt the same name, “state equation”, for the x equation.
The roie of a’ in (2.7) is clear from the familiar control theory. For example.
a necéssary condition for the node system to Le asymptotically stable is that

the a?’s lie inside the unit disc-in the complex plane. Even though the state




equation in (2.7) is linear and time-invariant. the output equation is nonlinear.
which complicates further analysis. Although we may assume that s/ is linear,
which is the case in part of our following analysis, we shall generally consider s;

to be nonlinear, e.g. a commonly used sigmoidal function.
2.3. Networks with NLMs (NNLM)

llaving defined the hasic structure for NLM in the previous section, we can now

construct a neural network whose elements are NLMs. We shal] denote the NNL)M
|

with m inputs, n hidden nodes and p outputs by Ny, ,,. For !simplicity, we only
o

|

consider the single-input and single-output (SISO’ system in this section. The
generalization to the multi-input and multi-output (MIMO) system is straight-

|
forward. Meanwhile, the input to the network has generally arbitrary values.

\
v :
. !

Figure 2.2: General Structure of NNLM
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A gencral structure for NNLM is shown in Figure 2.2 . Thé state equations are:

W0 — 0.0 :
node 0:4 Tk = @ Tk + .
N = so(2?)
yk = $SplcC ‘lk o
ot = a'zi_, +wiyl.
node 1, ..., noden-2:¢ “F T s 5
Y so(ctx}), i=12....n=-2
. n-1" __ n-1,n-1 n-2 . z
noden-1:4 % = @ xk]—l '*‘1 =1 W2illks
Yk = 33(cn‘ 1?;: )a

where the a's are scalars representing the dynamics of the ith node system, the
s;'s are the transfer functions. which are generally sigmoidal functions. and the

wi;’s are the synaptic weights for the path connecting adjacent layers.

Assuming for a moment that the transfer functions sg, s; and s3 are all linear
and defining the state-variable vector x¥ by x = [z%,...,277!], we can represent

the node system in a more concise form by

X = AXy-1 + Buy.

S = COxyy SR (2.8)
where
a9 0 0 0 0
wyc®a® al ] . 0 0
A= : : : : : .

Wy (n-2)c’a® 0 0 o a™~? 0

a’a wyclal wancta? oo wypogctia? !

BT = { 1 wpd® -+ wyn-n® @ ] ,
AN / Qi . K R o
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c={0o0 -0 C;“l :

= Z?;lz UJ“’IL‘Ql‘COCt .

[«Y]

Equation (2.8) represents a linear state and output equation with the transfer
matrix being a lower-triangular one. By assigning a'(for0 <i<n—1)in A, we
can alter the dynamics in (2.8). Assuming that ¢! # a' for i = 0. .... n-2, we

define the quantity a. as follows

n-2 ci
= e ‘ 9
a. = Z le,z,Lg,M_l — (_'9).

i=1
The quantity a. plays a key role in our subsequent discussions. As mentioned in
the begining of this section, N, ., denotes the NNLM with m inputs, n hidden

nodes and p outputs. Based on the anaiysis on controllability and observability

in the next section, we immediately have the following:

Theorem 2.1 Suppose that
(i All transfer functicns s; are Linear,
(1) wi, # 0 for all i)
[iii] ¢ # 0 forall i,
[iv] a. # 0 and a. < x.
vl @' # & fori# .
Then, any strictly proper SISO linear system with real and nonrepeating cigenval-

ues can be realized by Ny n-2.1, where the a's are the eigenvalues of the system.

Proof: Because the system (2.8) is completely controllable and observable (see

theorems 2.2 and 2.3 in the next section), the transfer fu. on C(s/ - A)"'B
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has no pole-zero cancellation between its numerator and denominator. Sinee the
order of the denominator polynomial is n. it represents a typical nth-order rational

transfer function.
Q.E.D.

We give an example for the caze n=1. The matrices A and B in this case are

@ 0 o 0 It

A= wyycla al 0 0 B g
T wyac®a® 0 a® 0| 7 | awgp®
a®a  wyclal wyctd® o i

c:[o 00 c’].

where @ = wyctwy @ + wyc®wyac” and the transfer function is

c3(b383 + 1)252 + bls + bo)
(s = a%(s ~ a')(s — a?)(s - a®)’

(2.10)

and

- ¢ 2 4 ( -
by = —a(a®+a'+a?)+ 2Pty + a'etiegy s + a’a,
2 12122 112
. ) y 0 ) .
by = a(a®? + a4+ ala?) — («® F aYa PPy, —
« 2 2 2
(af + a*)a' ! ity — a%a el et ey = autal

- 00102 [ U t 240
hy = =~ad’i'a® + "Gy ey + aalate 4"11'”11'_», -~

I } .2

01202
waateetwe,.

Thus, by properly choosing wy, wyg, way, wya, we can realize a th order linear

system. A block diagram for the realization is shown in Figure 2.3,

S




Figure 2.3: Linear System Representation of Order

2.4. Controllability and Observabiiity

The basic issues of controllability and observability for the system (2.3) will be
discussed in this section. For the definitions of controllability and observability,

interested readers may refer to [44]. We have the following:

Theorem 2.2 Suppose that
(i wi; # 0 for all ij,
[ii] ¢ # 0 for all i,
(iii) a. # 0 and a. < x.

Then, the system (2.8) is cempletely controllable if and only if the following in-

cqualities hold

At for i) =12 L (2.11)
- . -
[ Dy e T N ‘ -~ ! //
. Lo \ S e N
, T S /
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Proof: (Sufficiency) We shall prove sufficiency by using the Popov-Belevitch-

: . :
Hautus rank test (see [14]). Let A; be defined as follows : AN
. . P o
il
s—a° 0 0 0 -V
—w;1%a® s—a! 0 0 ; K
| —wypca® 0 s—a? .. 0 ;
12 X
| Ay =[sI-A B]= . ' . . . . :
! : : : : )
-2 \
J — Wy n-2yc®a® 0 0 §—=a"? 1
‘ L —a% —wyclal —wacta? L. —-u'-z(,l_-_»)c"""-u""2 ) W
| &
| . : =
0 1 . o)
. . ]
. 0 lL’uCo
I 0 wyoc°
| : :
{ 0 'lL'l(n_'z)Co
s—a™! a ] .
Obviously A, has rank n if s is not an eigenvalue of A,. For s = a°® and if «°® # ¢
I
. ; .
for i > 1, multiplying the last column by a° and adding it to the 1st column yields P
|
a® 0 0 0 1
0 a°-aq! 0 0 wy, c?
Ay = : : . . : : P § k .
0 0 | 0 T 0 Wyn-2)C l 4 B
0 —wpcla' —wypcla? ... «®—a"! a ' :
|
which has rank n.
For s = a® and if ¢ = «' for some i. deleting the nth column of matrix A, )
N B
vields a matrix As: . :
) - 4-.. - ?
[ 0 0 0 0 1 . _
-y e’ a® —a' 0 0 wye! ,
—wiac%a® 0 a®-a® .. 0 wyac?
Ay = 0 . . . .
~W(n-g)c"a® 0 0 a® — "2 Wi(naa)c”
i —a%: —wactal —wpcld? .. —wangc*2a? a

After clementary transformations are performed on the matrix Aj, its last row

becomes [0, 0, ... 0, %, 0, ..., 0]. Then, performing another series of elementary




transformations on the resulting matrix yields the following

[ a° 0 0 0 0 0 0]

0 a®—a! . : o : : :
% . N . . | N : :
i 0 . @l —-at 0 . 0 *
| As= | | s
| : 0 . - 0 . aO_aH’] e 0 0
; : : : : : : Poa®—a"t 0
i ! 0 0 PN 0 * 0 e 0 0 |
|
‘ which has rank n.
T
I N . - .
1 For s = a'(1 <€ i < n —2), deleting the nth column of A; yields
[ a’ 0 0 e 0
0 o —al 0 . 0
A P : : a' —a'-! 0
5= | . . .
: : : 0 0
: : : 0
[ 0 —wyclad —wyctd? —wyi-)ctat!
e 0 0 0 1 T
0 0 tre 0 ll'“CO
- u',,(‘”
0 R . ll'](,’+l)(,'”
at — a't! : : wiiv2)
: : : at — a2 :
—wacta'  —wysnc ettt o —wyogyctT2an? a |

After performing a series of elementary transformations, it is not hard to show

that the rank of the matrix is again n.
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For the case s = a™!, deleting the nth column of A; and performing one ele-

mentary transformation on A; yields

[ a™! 0 0 0 1]
0 an—l - al 0 ‘s 0 l_(fllqo *
Ag = : " o ’ : \
0 0 0» a"~! — gn-? Wi(n-2)C®
L 0 —wycla'l —wpctd® ... —-u.'g(n_g)c"‘?a"'.‘z a

Again, performing another series of elementary transformations on g. onc obtains

a™! 0 0o .. 0 1 ;
0 a*l'—-a' 0 .. 0 ' wy c® ;
Ar = : : : : .
0 0 0o . a" ! = a™? wypeg)c®
0 0 0 .. 0 da,
where d. is
d. = a.la™. (2.12)

Therefore, A; has also rank n.

(Necessity) Necessity is proved by contradiction. Letting a' = a’ for some

i # j,1,j=1.2, ..., n-1 yields a matrix A# which has rank less than n.

Q.ED.

REMARKS:

It is easy to see from the proof that the condition «® = a’(1 < i < n—1)is allowed.

Thus the system is still controllable even for repeated eigenvalues «® = @' for some

i between 1 and n-1. Notice that a,—y # a; for i = 0. ... n-2 is only a sufficient
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condition for the theorem. The following example shows that the assumption may

not be necessary.

Considering a case where n = 2. we have the state equations

% = a0, + w, (2.13)
ry = dvi_, +uwnced_,. (2.14)
e = c'rp. (2.13)

This system is obviously controllable no matter what the values of «® and a! are.

Thus, letting a® = a! = constant, we still have a controllable system.

A similar result regarding the observability of the system is obtained.

Theorem 2.3 Suppose that
(i) wij # 0 for all ij,
[ii] ¢ # 0 for all i,
[iii) a. # 0 and a. < .
Then, the system (2.8) is completely observable if and only if the following in-

equalities hold

d#£a for i #]. ty=L2.....on—-1. (2.10)

Proof: Necessity and sufficiency can be proved again by using the Popov-
Belevitch-Hautus rank test, namely, by checking the rank of the matrix [('7 (51—
A)T)T. Similar arguments lead to the conclusion of this theorem. with the only
difference being that the column transformations are changed to corresponding

row transformations.

Q.E.D.




REMARK:

The result on observability of the systems holds only under the assumption that

the transfer functions of the node system are all linear:
2.5. Separation of Learning and Control

In this Section., we shall discuss the effects of the weights on the overall per-

formance of the system. In Section 2.3, we showed that some of the entrics of

matrices A and B in (2.8) contain the weights of the network. This seems to imply

that the weights could affect the dynamics of the system. ‘Howev‘er, this turns out
not to be the case. In fact, the transfer function (2.10) tells us a very important
fact that the weights of the network will only affect the numerator of the system
and do not affect the ‘eigenvalues of the system will not be affected. In general,
we have the following. |

- d(s;w,a,
Transfer Function = _gT"_V_f_cl_’ (2.17)
i=0 (S - a;)

where w = (w;;)nxn, a=(a%...,a" "), c=(c,...,c"" 1) and d(s: w, a, ¢) is
a polynomial of order n-1 whose coefficients are the linear combination of entries

of matrices w. a and c. This property will be formally stated as follows:

Property 2.1 The dynamics of the system will not be afficted by chanying the

weights of the network.

Baseu on this property and the fact that the NLMs ar “extensions of the
McCulloch-Pitts neurons, we obtain the Separation Principle of Learning and
Control, stated below. The importance of this principle lies in the fact that be-

fore we actually use the system, we can set all a'’s to be zero. We then train the

i
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network using the backpropagation algorithm with a prespecified training set so
that the network has the desired stationary property. After training is done. the
parameters a' can be resumed and thus the network will function as a ncrmal

system.

SEPARATION PRINCIPLE OF LEARNING AND CONTROL
The training process of an NNLM and the control process after train-

ing can be séparated.

2.6. Linearization via Transformation of Coordinates and
Nonlinear Feedback

In Section 2.3, we saw that our representation resulted in a nonlinear discrete-
time system. There are many reasons for lineariziﬁg a nonlinear system, and
many publications in the literature [29, 53, 54, 72] discuss this problem. Before
we proceed, let us look at our discrete-time system whose nonlinearity arises from
the nonlinear transfer functions. In general, the transfer functions in input nodes
of a neural network are linear. Thus. the state-space description of our system

has the form

.1‘2 = (10.1'2_1 + .
J:L = u‘“couoxz_l + al.z.'L_l + w3 cuy.
n=-2 _ 0_0_0 n=2_n-2 . 0
z = Wyn-2)C A Ty + @ T ) + Wyn_g)C Uy,
n-2
n=1 _ _n-1_n=1 PR i 0.0.0 i 0
Ty = a7l + Z wysy(ca’zy_y + cwyic’a ry_; + cwnic’uy),
=1
— n-1_n-1 ' :
ye = sa(c"TxpT). (2.18)
A T
- .




The above equations can be written in the following form:

x.k = f(XR_l,Uk),' - . (219)

where xi = (29, ++,2}™") and f(xp_1.uk) = (fo(Xl1 ), famr (X1, ux))

is a vector of the equations which are defined above.

From the above. we know that the overall system consists of a linear sub-system
cascaded by a nonlinear subsystem together with a nonlinear ontput equation (sce

Figure 2.4 ). This in turn implies that the overall system is a nonlinear one.

It is natural to consider the problem of iocally linearizing the above system via
coordinate transformations and nonlinear fee‘dback.lln general, not all nonlinear
s_\'étems can be so linearized. A necessary and sufficient condition will be gi\'en in
Section 2.6.2. Once a linearized system is obtained, it is very easy to implement

a nonlinear control law to have the system track some desired signal. -

0 x9 N
X, k-ll c™! »(s3(. Y,
-X‘:'z -x::.’-l : ["‘l '

Nonlinear k -1 n-1
Function _—>®——> z > X1

L

Figure 2.4: Nonlinear System Representation of Order n

u—> B

2.6.1. Preliminary

We consider a smooth discrete-time nonlinear dynamic system

fA]
[}
(=]
-~

Xkp1 = f(Xpy Uppa), : (2.
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where x; = (29,2}, ..., 287" and u, = (WQoul,...,uf"") are smooth local coor-

dinates for the state-space M and input space U respectively. Before discussing
feedback linearizability for (2.20), we introduce the notion of a regular static state

feedback. We call a relation

Werr = QXi, Vi), - (2.21)

a regular static state feedback whenever g—“;(xk, Vi+1) 18 nonsingular at every point
(Xk, Vi+1). Notice that this implies locally a one-to-one relation between the old
inputs uj4; and the new controls vi4;. We can now formulate the notion of feed-

back linearizability for (2.20):

Definition 1:
Let (xg,u0) be an equilibrium point for (2.20), i.e. xo = f(xg,up). The system

(2.20) is feedback linearizable around (xg, ug) if there exists

(a) A coordinate transformation S : V' € R* — S(V) C R" defined on a neigh-

" borhood V of xg with $(x¢) = 0;

(b) A regular feedback u = a(x.v) satisfyving a(xg,0) = ug and defined on a

neighborhood 1 x O of {x¢.0) with %ﬁ(x.v) nonsingular on 1" x O,

such that in the new coordinates z = S(x) the closed loop dynamics are lincar

z(k + 1) Az(k) + Bv(k), (2.2

[5v)
<
O]
~

for some matrices A and B.

At this point, let us look at the equilibrium points of our nonlinear system. For

the system (2.20) it is not hard to show that the x*, u" satisfying f(x",u") = x-




have the form

. T u
" = —
1-af
1 .
i = Ty (w112 4 wyy P,
1 n-2 — ) . )
=t = - wasa(cfatz™ + cwy;?alz® + chwiPut)). (2.23)
1 n—1 292 1t 1
. — a1
t=1 .
Therefore, 2%, £1*, ..., z{(*=?* are all linear functions of u* but z(*~1* is not.

2.6.2. Necessary and Sufficient Conditions for Local Linearization via

Transformation of Coordinates and Nonlinear Feédback

In this section, we are going to use Grizzle's necessary and sufﬁéient conditions
[72] to prove that our nonlinear system is locally linearizable to a controllable
linear system. Before we formally give the result in the next section, let us look
at a sequence of distributions given by Grizzle in [72). This sequence will be

instrumental in the solution of the feedback linearization problem for (2.20).

Let # : M xU — M be the canonical projection and K the distribution defined

by

K = kerf.. (2.20)

where A/ C R". U C R™ and f. is the dual vector space homomorphism {rom

TM xTU to Tl




’
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Algorithm 2.1

Assume f. has full rank around (xg.ue).

Step 0: Define the distribution Dy in a neighborhood of (xg,ug) in M x [/ by

Do = =7Y0), (2.25)

Step i+1: Suppose that around (xg.ug) D; + I is an involutive constant di-

mensional distribution on T(M x U). Then define in a neighborhood of

(x0,u0)

Diy1 - 7t (D)), ) (2.26)

and stop if D; + A" is not involutive or constant dimensional.

The effectiveness of the above algorithm rests upon the following observation.

Lemma 2.1 Let (x,uo) be an equilibrium‘ point of (2.20), and assume that fa has
full rank around (zo,uo). Let D be an involutive constant dimensional distribution
on M x U such that D + K is also involutive and constant dirnensioﬁa?. Then
there exists a neighborhood O of (£q, uo) such that f.(Dlo) is an involutive constant

dimensional distribution around ry.

Based on the above algorithm and lemma. Grizzle [72] states necessary and suffi-

cient conditions for locally linearizing a nonlinear system to a controllable one.

Theorem 2.4 (Grizzle) Consider the discrete-time nonlinear system ( 2.20),
about the equilibrium point (zg,uo). The system (2.20) is linearizable around
(zo,uo) to a controllable linear system if and only if Algorithm 2.1 applicd to the

system (2.20) gives distributions Do, ..., D, such that dim(D,) = n + m.
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The proof of the above lemma and theorem can be found in [72]. In the next
section. we are going to show that our nonlinear system satisfies the conditions of

the above theorem and thus the system is locally linearzable.

- 2.6.3. Main Result

Now. let us consider our nonlinear system (2.20) in which f(x. 1) has the form

+ u
o 0
wuc a’z + alz! + wyncu
flzauyy=1| : , (2.27)
wl(n_g)c a®2° + a"'z.x"'? + wi(n-2)Cu
D DA ) .a;(c a'r’ + cwyc®a®r® + chwyicPu) j

where z = (2% z!,---,2""!) and u is a scalar. Before we present the main theo-

rem, we shall stat and prove some lemmas, which will be used later.

Lemma 2.2 Consider the nonlinear system (2.20) and the nonlinear function
flrw) of (2.27). Ifa* # 0 for 0 < i < n—1, then f. has full rank around the.

equilibrium point (z*,u*).

Proof: By noting that f: M x U — M is gnon by (2.27) . we can evaluate
fo: TM x 17 = T M by considering the natural basis (-ﬁ; 7e=r) in TM and
:’,7 in TU, where M € R*, U’ € R, and TM and TU are the tangont spaces for M

and U respectively. Let Z',Z?,..., Z" ke the basis in the image of f.. Then,

3
3 A
3T Z
I =Al | |,
a
E Zn
) Ll -7 '\ : ¢ /
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where A = (a;;). given by u;; = %é;, i,j=0,1,....n-1, and an; = % k=0.1.....
n-1.
Thus,
[ a® w;Pa® e wyaegyc®a® TS waish() ety ic®a® ]
| 1 I yall
| 0 a 0 wa185(.)cla
| A= : o
| -2 N ! -2_.n-2
| 0 0 a" (lg(n_g)bz(.)cn a’
| 0 0 0 an-!
i 0 \ 0 n=2 ' 0
| L1 wne® o w9 oy wsy(L)ctwye” |

Since @' # 0 for 0 < i < n -1, rank(A) = n and thus f. has full rank around

(z%,u").

Q.E.D.

Lemma 2.3 Let the conditions in Lemma 2.2 be satisfied. Let D be a subspace

inTM xTU. Then

dim(f-(D))z{ an(D) - amD<n

1
i

Proof: Case éi) dim(D) <n:

\
Suppose that di“fn(D) =p < nandlet YL Y217 be the hasis in D. Then,

without loss of generality, we have

3
v o

Y? 8r1

y? et
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where P € RP*("+1) and rank(l’) = p. Then,
A
Y & Z, Z, Wy
¥, e 20 N A/ W,
ol =rl o =pPal TP TP
. a : : :
Y, 3z Zn Zn W
To prove that f.(D) = span(1W,.....11,), it suffices to show that rank(P)=p. In-

deed, the fact that fank(l’):p < n and rank(A) = n implies that rank(f’):p.

Thus, dim(f.(D)) = dim (D).

Case(ii) dim(D) = n+1:
Then (2.28) still holds, but in this case. P € R0+ and rank(P)=n+1. The
fact that rank(P) follows from Sylvester's incquality on the rank of the product of

two matrices and the rank inequality for matrices A € R*™**, B € R**™(m < n)

rank(A) + rank(B) = n < rank(AB). (2.29)

Therefore, dim(f.(D))=n.

Q.E.D.

Lemma 2.4 Let = denote the canonical projection from M < U onto M given

by m(r.u) = &, and let Q be a subset of T with dim(Qi=p < n. Then

dim(z71(Q))=p+1.

Let ¥},..., ¥} be a basis in Q. Then any vector field in Q can be repre-

Proof:

sented by ¥0_, a,¥;, that is,




(a',....a",0,...,0) 0

But
N
}:’;, _ P P,
0 0 P
0 )

where P,

2 21T be a basis in TV x TU, then

3
Let ['.5;[,...,.—‘)—:—,,, Su

where I is an identity matrix.

Thus,

i
arl
9
arn

0

€ RPxn, P, € RPXY, Py € RU"+1-P1%1 and rank(Py)=p. rank(F;)=1.
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., 0 0
= Ve —_— 2.30
;aax'+a0u (2.30) o
N {
.‘\_ ]
and
P ,.i
[ i\
. Axl ar! :
|l Bl _p| P =P
"oy 0 -_— LI~ ,_3 - _i_
37 Bgn ‘
: 0 \ &
\ 0 ) Dl
So rank(P) = p+1 implies that i ]
(% 1/
Y N
-1 P g
10 /
: f'"
\ 0/ §
has dimension p+1 or dim(=2'(Q))=p+!.
Q.E.D.
Theorem 2.5 Consider the discrcte=time nonlinear system (2.20) about the cqui-
librivm point (x=.u). Ifa* #0 for0 <i<n—1 then the system is linearizable
around (x*.u*) to a controllable lincar system. »
Proof: < -
Step 1: Using lemma 2.2, we sce that f. has full rank around the equilibrium : -
(z",u"). Therefore, we can apply algorithm 6.1 to compute D;. )




and TM C R

f.(&l,&Q,-- -, an,

Let

and

or

- - -
( a -+ aOal o'l

from which we

So.

. 7w O
where Y = 35

Let A" = ker f.. Note that f.: TM x TU

a) = 0 implies that

0 0 1
o o
a® 0
0 a!
A= AT=|:
0 0
1 0

Therefore f.(al.---,a", a)

= (a'.---,a"a)d.

- ﬂ—l?' ll'”.’%-_)(.)(‘ill'li(.'

T

0 0 :
0 wyysh(.)ctal
0 an-1

0 0

(a - a a)A':O.

conclude that a* = ... = g"~!
K = span(a'—
Jdur!

span(Y’)

~ a2 and dim(R)=1.

e -2 i e -
"2t Tt wegsh () ctatat T g ) =0,

= q" = 0. But

0=1 0

- a%al—
Jdu

).

—TM.and TM xTU C R xR

The equality

0

= —u"!t,
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Step 2: Let Dy = 771(0). Then we have Dy = span(%) and dim(Do)=1 from
Lemma 2.4. Let Diyy = 771 fu(D;) for 0 <4 < n.
Suppose now dim(D;)=p and Xj, -+, X, are a basis for D;. Then we have

X1 pns
X, :
.| =P & |
. g
X, 1

where P € Rp*(n+1), Thus, (X, ,Xp,f’] is a basis for D; + K, and

Xi p =
X‘p =i --. - _i_ y
- P 65"
Y %
where p=[1 0 0 .. 0 —a°. Obviously, [X;,X;] = 0 for i # j and

[X:,Y]=0 for all i. Therefore, D; + K is involutive and has constant dimension.
Repeatedly applying Lemma 2.2 and Lemma 2.3 on D;, and using induction on
i, we obtain a D, whose dimension is n+1. It follows from Grizzle’s necessary

and sufficient condition that the nonlinear system is linearizable to a controllable

linear system.

Q.E.D.

2.7. Discussion

The lack of rigorous mathematical representation of control systems in current
paradigms of feedforward and recurrent neural networks is a drawback to the de-
velopment of research on neural networks for control. The feedforward networks
are known to work as a mapping between two information domains. Most of the

current research in neural networks for control and related publications discuss
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using this type of neural network to “learn” a model or a controller, which is
" usually either highly nonlinear or hard to implement. The results published show
that these approaches are satisfactory in some cases. However, there is little de-
velopment to attempt to relaté the theory of classical and modern control systems
to this type of neural network. Neural networks of this'type are always treated ‘z{s
a “Black Box” and thus there is no direct contact with the “internal” informatioﬁ
of the box. A classical linear control system, which may also be called a “Black

Box”, can be represented by a transfer function in the linear case, and thus the |
input-output performance can be studied thoroughly. This work exploits the “in-
ternal information” of the network and attempts to represent the control systems
in terms of this information. Therefore, the network itself is not only a control
system, but it is also capable of learning. In this case, the paradigm presented

here may be viewed as an extension of current recurrent networks.

As quoted in [93] by Williams: “While much of the recent emphasis in the
field has been a multilayer network having no feedback connections, it is likely
that the use of recurrently connected networks will be of particular importance
for applications to the control of dynamical systems”. Indeed, because of the
incorporation of feedback or dynamics inside the networks, the recurrent networks
show great promise for the future of research on neural networks for the purpose of
control. The property that the Hopfield net has a Constant Addressable Memory
provides a way for implementing many practical problems; e.g., traveling salesman
problems. Another particular type of recurrent network, a settling network, has
also been widely recognized as important in connectionist circles. Such a network
converges to a stable state from any starting state. The final state of such a
network can be viewed as the solution to a certain constraint-satisfaction-type

of search, as in relazation labeling, or it might be viewed as a retrieved item
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from a content-addressable-associative' memory. Despite this. the ambiguity of
information stored in networks hinders the networks direct use of the information,

and thus there is very limited use for this type of network for control purposes.

Our attempt is to mathematically formulate the control systems inside the
neural networks. We can easily represent each linear SISO system in the neural
network, by introducing a small feedback loop INSIDE each neuron, rather than
a feedback connection. For this paradigm of neural net\;/orks, we can directly use

the internal states to construct a feedback control law. What is more important

is that a network of this type is itself a system, but not an unknown “Black |

Box”. Thus its input-output performance can be studied just as in the case of the

classical control system . Based on this observation, many conventional synthes.is'

methods can be directly borrowed to design the system. The sta,tionéry property
of the system can be preassigned by means of learning, a unique feature that the

classical control system does not have.

Of course, this is only a first step in this direction of research. There are still

many interesting open problems, such as:

1. Designing a controller which is also a neural network of the same structure, -

and then applying the controller in the system modelled by the neural net-
works discussed in this chapter. It is interesting to study this type of mixed

network and to explore its properties.

o

. Carrying out research in the case of multi-variable system. It is straightfor-
ward to extend current results to a multi-input and multi-output system.
However, extension of the results of linearizability is not trivial and requires

further study.

P
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3. Considering how to construct the training set. By the Separation Principle

of Learning and Control, the systems of this chapter can be regarded as
networks when the dynamic parameters are set to zero. Thus they have
the capacity Of, learning. The construction of a training set is an int'eresting
problem. Also by this same Principle, it is not hard to show that it is possible
to construct a training set such that after the network has learned, it has
the desired stationary properties. Thus, the problem of how to construct a
training set so that ihe trained system has the desired stationary property

needs to be investigated.

. Considering the applications of results in this chapter to the differential
game problems. Differential game prohlems can be modeled by an NNLM,
and control strategy for each player can be obtained using various controller
design techniques. In this case, the NNLM used for modeling the differential
game has at least two inputs, since most differential games have at least two
players. This application is very interesting and is worthy of further study.
Although results in this chapter will not be directly used in the next chapter,
they do have potential applications for such kinds of problems. For example,
by modeling a differential game. problem using an NNLM and by designing
controllers using additional neural networks without local dynamics, we ob-
tain a network consisting of several small neural networks. Studying such a
netw{ork which consists of several small neural networks is also interesting.

We hope that results of this kind will appear in the near future.




3. Differential Games with Neural Networks

Rufus Isaacs [40] ﬁr.st'loo'ked into the theory of modeling‘tactical encounters in
what he termed “Differential Games” in his seminal Rand report [39]. Isaacs
assumed a differential model for aircraft ‘dynamics.. He also assumed that the roles
of pursuer and evader are fixed for the duratiop of an encounter. Only the pursuer
was assumed to have weapon capabilities that could be modeled by a hyper-surface
in the state space.. For more than two decades since Isaacs’ pioneering work. there
have been many publications in the literature about this subject. However, the
problems studied in the literature were different from that studied by Isaac in
his original report. There are many practical systems which can be modeled by
différential game problems. For exar’hple, cooperative and non-cooperative games
are typical differential games in the area of'economic systems. Up to now, it is
commonly agreed upon that there has been a str‘ongv theoretical foundation in the

field of differential games.

However, there are s;x;lgreasons why differential games have m}z lmd\\nlo»pmuli '
use in air combat whose arena is one of the most compl.gx_dyn:nnic_systvms. In
fact. the applications of conventional differential game theory in many practical
problems are limited because of the following reasons. First, the classical solution
of a differential game is based on simultaneous backwards integration of the state
and adjoint equations, starting at the target set (terminal manifold) of the game.
in order to fill the entire game space by the ensemble of optimal trajectorics. The
backwards integration is a rather direct operation as long as no singular surface

of the game exists. In a simple game, with no more than two state variables, the
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existence of the singular surface can be easily visualized. For a differential game
of three independent state variables the same process becomes very cumbersome.
and for dvnamic models of higher dimension, it is virtually impossible. Second.
at the other end. the numerical solution of a two-point boundary value problem
associated with the differential game satisfies only the necessary conditions of
optimality, and it cannot identify the singular surfaces of the game and has no
tool to verify the sufficiency conditions of the game solution. Third, as illustrated
by an example in (81}, Shinar indicates that the ‘,fra.me of classical differential
game theory is rather limited to accommodate everjl relatively simple models of a
“real-world” dynamic conflict. To be more exacf, the assumption that the roles
of pursuer and evader are fixed during an encounjt,er is not reasonable since all
_participants in an encounter have weapon systems that can be modeled by a con-
tinuous probabilistic function. Fourth, in future %.ir combat most engagements
will start at rather long (beyond visual) ranges. ’:I‘hus, the initial conditions of
the above described two-target game are generally iin the “draw” zone. Therefore,
the only guaranteed outcome of such a non-coopex}lative game is a “draw”. This
result, which denies the very essence of an air-to-air combat and consequently
the justification of the high cost of advanced aircraft and missile development, is

clearly unacceptable from an operational point of view.

As a consequence of the difficulties outlined in the previous paragraph, one is
strongly tempted to search for an alternative approach to the analysis of dynamic
conflicts. A priori; Artificial Intelligence seems to represent such an alternative.
An interesting concept introduced in [77] is the OODA loop - Observe, Orient,
Decide and Act - in a cyclical maneuver. The OODA concept is based on the
fact that in current classical air combat at short range, pilots have been using

their eyes as sensors and their brains to integrate the visual and sensory-supplied




information necessary to play the game. Although the OODA loop undoubtedly

plays an important roie in air combat pilotage, the limitations are obviously those
of human ability in the supersonic combat énviromﬁents. Humans are character-
ized by a limited processing rate - two event‘s_:taking place in less than about one
tenth of a second will generally be perceived as a single event. Another limita-
tion concerning the processing rate involves the f_a.ct that an activity of integrated
percepts, decision and motor action is performed. To overcome these difficul-
ties; Rodin et al i)roposed in [77) an Artificial Infelligence approach to designing
an operational on-board system, called “Tactical Decision Aid Expert Systems
(TDAES)”, to support bilots in tactical decisit;h making processes. Thé Expert
System generated an initial flight and action plan (initial mission)." The optimal
plan gets reevaluated and possibly changed every time when an unforeseen event
takes place. The system employs a basic set of pursuit-evasion algorithms for

suboptimal mission generation.

In their pioneering work, Rodin et al proposed in {77] the use of artificial intel-
ligence methodology in air combat games. The work was based on the semantic
~ control paradigm proposed in [76] by Rodin. In this paradigm;a control pfoblem
is bf&ken into three blocks. Their functions. when applied to a-situﬂaﬁdn governed -

by differential games (for instance), are as follows:

(i) Identifier: Identifier block identifies the differential game, parameters and

role that the aircraft should assume in order to destroy an assigned target.

(ii) Goal Selector: The Goal Selector solves the differential game chosen by
the Identifier block. The results are the optimal trajectories, barriers and

controls.
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(iii) Adaptor: The Adaptor determines the controls that causes the aircraft to

“best” follow the optimal trajectory determined by the Goal Selector.

In [95]. Weil used Artificial Inteliigence methodologies to splice the solutions in
low order one target models togéther in a sub-optimal fashion that will be useful
in air combat. He explored the characteristics of a self modifying system. Among
the methodologies he used. the artificial neural net approach is impressive. Several
neural nets are in his approach. One net is the classification net that determines
which differential game from the knowledge base will be chosen along with some
of the criteria that might be used to make the decision. Once a differential game
is chosen, another neural net is assigned to the game so that it can determine
the parametrizations of the game. The method of generating the training set for
each net is unique in the sense that, instead of generating the training set off-line
by using traditional methods, the training process is done by closing the loop
simulation forward and adjusting the weights by propagating errors backward in

time. Training each individual net is relatively independent.

Based on the above semantic control paradigm, we present here a new approach
to using neural networks in differential game problems. The approach reflects the
fundamental phases in real-life conflicts. Instead of building up a knowledge base.
we implement the neural nets in the Identifier and Adaptor blocks of the semantic
control paradigm so that the approach is more general and is capable of working
on-line during an entire encounter. Generating training sets for these two neural
nets is different from other approaches [49, 93] in the sense that the nets in our
approach do not learn the optimal trajectories generated by optimal controls but

learn the mapping between two information regions.
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(1}

This chapter first discusses the fundamental phases in real-life conflicts and
gives a general configuration summarizing these phases. The configuration pro-
vides a basis for further analysis and the paradigm for diffe;ential games with
neural networks. In Section 3.2. two paradigms of differential games with neu-
ral networks are given with emphasis on one player ard two piayers ;espectfvely.
These paradigms represent semantic control. One contribution of this approach
is the Identifier, which takes the environmental inforrﬁation and outputs an esti-
mate of the opponent’s strategy. In Section 3.3, the INTERCHANGEABILITY
conditions will be discussed. Interchangeability is a basic assumption.throughout
this study. In Section 3.4, several algorithms with the same basic fra.me will be
given. A detailed discussion of each stage and of the implementation of the algo-
rithms are also given. In Section 3.5. a detailed study of a pursuit-evasion game

problem will be given. The simulation results are quite satisfactory. Discussion

of the simulation results with the algorithms of different paradigms, direction of

further research on this topic, and the conclusions will be given as well.

3.1. Motivation

In real-time life conflicts, the actions of two players usually consist of three phases:
discovering the opponent. finding what this opponent is doing, and making a .
decision. Upon finding the opponent. the pilot will first identify his maneuver.
an_d then react according to his opponent’s perceived action. Sometimes, it is hard
to distinguish between phases because some phases may last very short periods.

These three phases are the same in all air combat problems, though the last two

stages may repeat for the successive time intervals, e.g. the pilot may change .
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from evasion to pursuit upon finding that the action of his opponent changes

frorn attack (o withdrawal.

The above process is similar to the OODA loop outlined in the last section.
and these phases can be formally stated as th¢ following configuration. We assume
that there are two players engaged during the entire encounter of the game. Each
plaver employs the three phases in the prdcess of making a control decision. \We
only give the phases for one player because the phases for the other player are the

same. For each player, each individual phase may start at a different instant.

General Configuration of Phases in Real-life Conflicts:

Phase 1: Discovery of the opponent
Phase 2: Identification of the actions of this opponent
Phase 3: Making decision for next action according to this opponent’s

perceived strategy

Phase 1 is self-explanatory. Iminediately after finding his opponent, the player
identifies an approximation to the strategy ard maneuver and obtains informa-
tion about the range, bearing, heading and speed of his opponent. Gathering this
information is accomplished in phase 2. In our discussion, examples of strate-
gies may be pursuit, evasion, or disengage. Typicai exainples of maneuvers may
be found in [37. 80]. Techniques used for identifving the tactical air combat
maneuvers are in the forms of decision-making, scheduling, and control systems
[1C, 22. 37, 64]. Recent works in using neural networks in diverse ways for the
classification of underwater sonar targets [27] and recognition of radar targets [71]
show great promise in the area of maneuver identification. The information ..bout
the range, bearing, ‘heading and speed of his opponent is generally gathered by

means of mathematical devices. Many times, this information is crucial to the
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player’s control decision making. In phase 3, the plé\}'ér reacts according to his
opponent’s perceived action. His stratvegies might be pursuit. evasion. or disen-
gage. Generally speaking, his strategy is some type of generic mapping of his
opponent's strategy. which in some cases’ rﬁay” be a convtinuous/‘discrete-time tyvpe
of mathematical functions. In light of the above, his strategy could be

evasion if his opponent is pursuing;
strategy = ¢ pursuit if his enemy is escaping and a chance exists;
' observation if both sides choose to be peaceful.

!
REMARKS:
: i

1. In this cfonﬁguration, one player should be in one and only one phase at any

instant '4al.lthough sometimes it is hard to distinguish between phases because

of their i\/ery short periods. For example, one player usually identifies what

strategylJ his 6pponent is taking almost at the same time ke discovers his

opponert and thus it is usually hard to distinguish between phase 1 and

phase Q‘Efor this player.

2. At any instant, two pl#)'ers may be in different phases because the phases for
each individual player may last for different periods. Moreover. the last two
phases for each individual player would alternate as time passes. However,
the mutual and continual observation of each player by his opponent is also

assumed. as is their mutual ability to identify the opponent’s maneuvers.

3. Although the dependence of next action on the opponent’s strategy is usually
not clear in general zero-sum differential game problems, this configuration
is realistic for many applications of differential games and other real-life

conflicts. In fact, in the general zero-sum differential game problems, each
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player in such games is supposed to play his own optimal strategy regardless
of what his opponent does. Failing to do so on one side may do the other
side a favor by increasing or decreasing the relevant cost function. However.
not only are therc some categories of differential game problems in which
the optimal strategy of one side depends on the strategy of the other side.
but also real life seems to be like that. A pilot will rarely fly an absolute
optimal trajectory and a good pilot will overcome a poor one by capitalizing
on the latter's mistakes. Thus, he will formulate the plan of his actions in

accordance to what his opponent happens to be doing.

To justify the genera’ configuration given previously, we shall give the following
simple two-player game problem in which E denotes one player (e.g. an evader)
and P the other (e.g. a pursuer). In this example, we shall omit the phases 1 and

‘ 2 in the general configuration, since they are conceptually simple in this case, and

emphasize the phaie 3.

Example:

Consider a simple game probler: in a 2-dimensional plane.  is the upper half-
plane and R is the x-axis. The vecto-gram for E is shown in Figure 3.1: it has a
downward unit vertical component and a horizontal headline of half-length u(x.y),
a positive and smooth function. That of P is circular of radius w(x, y), again a
smooth, positive function with always w < u and, for some constant ¢, w < ¢ < 1.

The total velocity for x is to be the vector sum of a choice from each vectogram.

Analytically all this means that the kinematic equations are

r = u(xr,y)Y +w(z,y)singd, (3.1)
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vy = =1+ w(r y)coso, -1<ev <1,

The payoff will be terminal with H = x on R (where y =0). Thus E will strive

to have x rcach R at a point as far right as possible, and P similarly struggles for

the left.

Always E will play his rightmost vector (¢ = 1 in the KE). At Figure 3.2 let -

XA be this vector. The line XB is tangent from X to a circle of radius w (w

is reckoned at \) and center A. Then XB is a properly oriented semipermeable

direction. If a family of curves is drawn (an ordinary differential equation solved)

having these directions as that of their tangents at each point, these curves will

be semipermea If each is labeled with the value of H at its meeting with R. the

labelings will constitute V(x).

(a) ~ (b)

Figure 3.1: Vectograms of Players E and P

From Figure 3.2, it can be scen that

J = a-lyg

and

®

(3.3)

(3.4)




Figure 3.2: Trajectory

It follows from equations /3.3) and (3.4) that

o = 7r+tg"%+sin"-—l—\/t-l-)+__—u_2-. (3.5)

If we can consider u(x.y) to be a control for the evader, it is clear from eq. (3.5)

that the control for the pursuer depends on the control of the evader.

3.2. Architecture

A paradigm for differential games with neural networks is shown in Figure 3.3. It
is called a one-player paradigm of differential games with neural networks because
only one side of the game is considered. Figure 3.3 clearly represents the general
configuration discussed in the last section although the first phase is omitted. The
paradigm consists of two stages. Stage [ represents one player’s process of making
a control decision, which imitates phase 2 and phase 3 in the general configuration.
In this stage, the neural identifier takes the environmental infc: mation and gives

the estimate of the opponent’s control strategy. The input information to the




63

Neural Identifier is relatively independent of the system state variables because
the network takes only the environmental information which usually comes from
the sensor, e.g., from readings of an odometer. To represent phase 3 of the general
configuration, we use another neural net, called Neural Controllérv. for the control
purpose. Based on the estimate of the opponent’s contrél strategy and the optimal
criterion given by the user. the neural controller gives the optimal control for the
player. The information of the state variables x is needed for evaluation of the
optimal control because the neural net controller is usually viewed as a part of

the system for stage I.

In stage I, because we only consider the one-player paradigm, we simply put a -

neural net controller in stage II. which represents the process of making a control
decision for the other player. We assume no control over the player, and he can

make a control decision based on his own criterion.

|x
System

i,

stage [

I Goal selector
N g
Controller —Adaptor

X 1
o ST

NN i
{dentifier

[V u—

it T
avironmen
v € t

stage II

NN :
Controller | |«s— Goal sclector

X

Figure 3.3: One-player Paradigm of Differential Games With Neural Networks (a)
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The system is described by a set of differential equations
x = f(x.o,v),  x(to) = Xo, (3.6)

where f(x.o.v)is an n-dimensional vector of continuously differentiable functions
and x is an n-dimensional state vector. The goal for both players is to choose o

and v to maximize and to minimize the cost function J(o.¢'. xg). i.e..

maxminJ(d, ¥'. xo0), 3.7
o€d vew ( o) (3.7)

where @ is the feasible set for ¢ and W is the one for ¥. The optimal value is

denoted by Joptimal

‘]optimal = rgeag !Jlel‘? J{o. v, Xo). (3.8)

Now let us define J,, by
Jy = max J(é.¥,Xq), Y eV, : (3.9)

where again ¢ and ¥ are the feasible sets which contain all possible values for ¢,

¥ respectively. We have

J

optimal = {I}sll? J.. ~(3.10)

Obviocusly. J.. is a functional of v'. Replacing v by v, the estimate of ', vields

J; = max J{o,v.%x0). v eV, . (3.11)

Equation (3.11) is important in the sense that it is the analytical representation
of stage I in Figure 3.3. Namely, equation (3.11) is the representation for the
player who tries to us: ¢ to minimize J(¢, ,%0) based on the estimate value

v Changing the cost function J(6,%,xg) is equivalent to changing the goal
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selector{76] in stage I. Based on the estimate of the control strategy . one plaver
makes a control decision using the optimal criterion (3.11).

If we exchange symbols v and ¢ in equation (3.11), it is equivalent to exchang-
ing ¢ and v in Figure 3.3 and J; is, in this case. representing the player who tries
~ to use ¥ to minimize J(é. ¥'.Xo) based on the estimate value ¢. To represent this,

we define J, and joptimal by

Jy = %igJ(é,u':,xo), ped, : (3‘12)
Joptimal = mipJa | (3.13)

Figure 3.4 shows the paradigm for this case. One question may be asked about
the equivalence of Figure 3.3 and Figure 3.4. That is equivalent to asking whether
joptimal = Joptimal' (3.14)

A more detailed discussion on this topic will be given in the next section.

Unlike the general scheme of differential games, the enemy’s strategy need not

~ be optimal in this paradigm. Instead of assuming that the enemy plays optimally, -~ -

we shall consider all the possibilities that the opponent can take. This can be
seen in equations (3.9), (3.10) and (3.11). In equation(3.9). J, is a functional of

¥ which takes all possible values from the feasible set V.

The above paradigm assumes thac the function f(x,¢, ) is known and it is
continuously differentiable to all its arguments. We do .not eliminate the possibility
that f(x,¢,%) is unknown, in which éase an additional identification process is
needed to get the estimate of f(x,#,¢). For simplicity, we assume that the

function f(x, ¢,%) is known throughout this work.
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Figure 3.4: One-player Paradigm of Differential Games With Neural Networks(b)

3.3. Interchangeability

In this section, the following assumption will be justified

J,

optimal’ (3.13)

joptima.l =

In general. the following statements are equivalent:
(a) © and v are exchangeable in Figure 3.3 and Figure 3.4,

(b) J optimal = Joptlmal'
(c) Interchangeability:

maxminJ = max(mm J) = min(max J),
2€EP weWw P€P weW vEY 0€d

subject to £ = f(z.0.v).
Before we discuss the problem in detail. let us look at a simple example [12].

Define L(u.r) = u? = Juv 4+ 20, =1 <u <1, =1 € v <1 anditis not hard to




see that

m‘gx(muin L(u,v)) = 0, (3.16)

and

min(max L(u,v)) = 2. | O 317)

Therefore,

| mf.x(muin L(u, v)) # muin(m’;ax L(u,v)).

. From this, we know that it is not always true that statement (c) holds. The

condition that statement (c) or (a) holds is called the interchangeability condition.

In general. consider a continuous-time system whose equation is given by

A(t)x + B'(tyul(t) + BX(t)u?(t), t=0, (3.18)

X

Lhu?) = (e, + [ {x(0 + W OF - rl 0Pt (3.19)

where Q; 2 0, Q(t) 2 0, t € [0,t,],r(t) > 0,ts is the tefminal time, all matrices

and u! and u? have piecewise continuous entries. The initial state xg is known
to both players.

Let =' denote the policy space of player i. Further, introduce the function J:

' xZ2 > R by

J(p',p?) = L(ul,u?), (3.20)

uh =ui(), kex phyeZii=12 (3.21)

where we have suppressed the dependenc= on the initial state xg. The triplet
{J:=1,Z?} constitutes the extensive form of the zero-sum dynamic game, in

the context of which we can introduce the notion of a saddle-point equilibrium.




Definition 1:

Define the following quantities:

where J and J are the upper value and the lower value, respectively. Generally.

we have the inequality J > J in the context of static games.

Definition 2:

Given a zero-sum dynamic game {J:Z!.Z?}, in extensive form, a pair of policies

(u'*, u?") € =! x =? constitutes a saddle point solution if, for all (u!, u?) € Z! x =2,

J(u'*u?) S J7 = I 6®) < T u). (3.22)

The quantity J* above is called the value of the game, which is defined even if a

saddle point solution does not exist, as

J:= min max J(u',4?) = J* = max min J(pu',4?) =: J (323)

“l ezl “ZGE} u2e=? plezt

Only when J and J are equal, as in eq. (3.23). is the value J* of the game defined.

In [9], Basar considered the system described by eq. (3.18) and the cost function

in eq.(3.19) and gave the following result on the open-loop saddle point solution

[9]:

Lemma 3.1 The quadratic objective functional L(u', u?) given by eq. (3.19), and

under the state equaticn (3.18), is strictly concave in u? for every open-loop policy
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u' of Player A. if, and only if, the following Riccati differential equation does not

have a conjugate point on the interval (0,1 ;]

S+AS5+SA+Q+ %SB’B"‘S =0; S(ty)=Qy.

We have the.full.owing result on the open-loop saddle-point solution [9]:

Theorem 3.1 For the linear-quadratic differential game with open-loop informa-

tion structure. let the condition of above Lemma be satisfied, and introduce the

following Riccati differential equation
Z+A'Z+ZA+Q-ZB'B"Z + -};ZB’B"’Z =0; Z(t;)=Qs  (3.25)
Then,

(i) The Riccati differential equation (3.24) does not have a conjugate point on

the interval [0,t/].

(ii) The game admits a unique saddle-point solution, given by ;
W=tz = -BOZew e |
: ) \\ /
2= 2= 1 2 7 - \ B ﬂ’:\_
u®(t) = p*(t;z0) = ;mB (¢)'Z(t)z*(t), t 20, (3.27) :

where Tloe,) i the corresponding state trajectory. generated by

i = (A= (B'B" = LBBAZ()z% 2°(0) = 2o (3.28)

(iii) The saddle-point value of the game is

L* = L(u',u®) = 23Z(0)zo. (3.29)
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(iv) If the Riccati equation (3.2}) has a conjugate point in the open interral

0,t4). then the upper value of the game is unbounded.
f p

In this study, we would consider the system described by eq. (3.18), assuming that

the interchangeability condition is satisfied. Thus, we have the following:

ASSUMPTION

minmax J = maxminJ.
6 W v 0

As stated it the theorem above, the assumption can be checked by the con-
jugate points of the Riccati differential equation (3.24). If this assumption is

satisfied, the game saddle point and the calculus saddle point are equivalent [12].

3.4. Algorithm

Based on the discussions in the previous sections, several algorithms will be pre-
sented in this section. The basic idea is for one player to repeat phase 2 and
ph?se 3 of the generzl configuration described in the first section while assuming
no “‘control cver his opponent’s strategy. For the other player, his strategy can
be generated by some external generator. This process results in the one-player
paradigm algorithm which will be described below. In practice. the other plaver
may |implement the same process of the phase 2 and phase 3 as well, which re-
sultslin the two-player paradigm élgorithm. The two-player paradigm algorithm
of differential games with neural networks will be discussed later in this section.
The details of each algorithm will be given. One should know that the basic
frame of each algorithm remains the same, namely, to repeat stage I and stage

I1 for one particular player or all players. Lu the one-player paradigm algorithm,
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phases 2 and 3 of stage I for one player are repeated and we assumed no control
over the strategy for the other plaver. n the two-plaver péradigm algorithm, we
implement the same process of both stage | and stage 11 for each player. Finally.
in algorithm 3. we implement the process in stase [ hased o the idea discussed

in the last Section 3.2. Figure 3.5 shows the rime <ep for the implerentation.

stage 11 stage 1]

| o U
CFrgare 3% Time oo B One aner

In what follows. the plaser to wiom the awgerithans are appiied is called “own

player”, and his counterpart is “the other plaver”.

Algorithm 1(One-player Paradigm):

Stage I: (1) Using the environmental information. identify the other player’s
control strategy. |

(2) Based on the estimate of the other player's movement or strategy,

generate a new control value for own player by using the optimal control

law.

Stage II: Generate a new control value for the other player.

REMARKS:

Y

1. The environmental information in stage [ is usually numerical values of

observable state variables, but that information could be curves generated




by state variables. One way to obtain the environm=ntal information is to

first obtain the characteristics of the segment of curves. e.g. the direction
information and the sharpness of the turning corner, and then match any
of this information with that stored in the database. The strategy assigned
to any matched segment of curves will be said to be the strategy employed
to generate that segment. Details of the method will not be given here. In
the remainder of this dissertation, we will use the observable variables as

the environmental information in stage I.

2. The control value in stage II could be genérated by any control law (or
maneuver) since the own playver has no control over the opponent player.
In this algorithm, changing control law on-line is allowed for the ovpponent
player. The own plaver has the capability, realized by an identifier in stage I,

of keeping track of the changes of control strategies of the opponent player.

3. In practice, the difference in the length of time intervals for stage I and
stage II could be significant since an optimal control law is used in stage I
and hence the time required to compute the optimal control could be much

more than that in stage II.

1. In our simulations, we realized the identifier and controller using neural net-
works. There are many publications in the literature discussing the problems
of neural controllers (e.g., [4L, 95]). This type of controller is particularly

useful for difficult control problems [3].

In what follows, we give a slightly different algorithm called a two-player paradigm
algorithm. By assuming that two players use the same process of identification

and control, we can construct, in Figure 3.6, a different paradigm of differential

T A e

LT B S [ A
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games with neural networks. In this paradigm, instead of assuming an arbitrary

controller structure in stage II, we use the same process for the opponent player.

{x
System
stage [ ¢
N -«—- Goal Selector
Controller Adaptor
. stage I v "i, X
Adaptor [ NN NN
’ o Controller Identifier
Goal Selector r WY W\ W\
N environment
o
NN
Identificr
444444
environment

Figure 3.6: Two-player Paradigm of Differential Games With Neural Networks

In the following two algorithms, we assumne that two players are engaged in
the entire encounter. For simplicity and clarity, we denote “Player A” for one

player and -“Pl'ayer B” for the other.

Algorithm 2(Two-player Paradigm):

Stage I: (1) Using environmental information. identify playver B's strategy.
(2) Based on the estimate of player B's movement or strategy, generate

a new control law for player A by using optimal control theory.

Stage II: (1) Using environmental information, identify player A’s strategy.

(2) Based on the estimate of player A’s strategy, generate a new con-

trol law for player B using optimal control theory.
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Last, we give an algorithm based on the discussions of the last section. In
this case, the optimal control in stage Il could be very compiicated and highly
nonlinear even though the original system is linear. This will be illustrated in a

pursuit-evasion game problem in the next sectica.

Suppose that the system for two players is described by .

x = f(x,0,u), ' (3.30)

where f(x,®,v¥) is a vector of differentiable functions, x is the state vector of
dimension n (n is a positive integer), ¢ is the control strategy for player A and v
is the control strategy for player B.

The goal for both players is to maximize (or minimvize) a cost function given
by J(¢,¥)

mjxméin J(o,¥) (3.31)

Again, we use J; to denote the optimal value for J(é, 1,[3) if 113, the estimate of ,

player B’s strategy, is known, that is
Jy = min J(&, ). (3.32)

With these notations, we have the following: \

Algorithm 3 (Optimal Control Paradigm):

Stage I: (1) Using the environmental_informz&ion, identify player B’s strategy.
(2) Based on the estimate of player B’s strategy, generate a control

strategy by using optimal control theory.

Stage II: From the strategy used in stage I, coastruct a new problem

max Jy, (or minJy),
Y ]

subject to  x = f(x,9,¥),
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3.5. A Pursuit-Evasion Game Problem

3.5.1. The Problem

In a pursuit-evasion game[12], the pursuer’s control is his acceleration, a,(t), nor-

mal to the initial line of sight (ILOS) to the evader. The evader’s control is his
acceleration, a.(t), also normal to thevILOS. The relative velocity along the ILOS
is such that the normal time of closest approach is ty. If v(t) is the relative veloc-
ity normal to the ILQS, and y(t) is the relative dispfacement normal to the ILOS,

the equations of motion are

b= ap-a, W) =vs . (333)
y = v, y(to) = 0. ©(3.34)

The pursuer wishes to minimize the terminal miss, |y(t;)|, whereas the evader

wishes to maximize it, so the perfcemance index may be taken as
1 2 .-.
J = -2-[y(t,)] . (3.35)

The accelerations of the pursuer and the evader are limited

IN

|ap| Apm,

lae] £ aem. | (3.56)
where apm > aem. The solution proceeds by first forming the Hamiltoﬁian
H = Af(a,-a.)+M\v. | (3.37)
The adjoint equations are then

Ao = <A, Au(ty) =0, ©(3.38)

Ay, =0, A(ty) = ylty)s (3.39)
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and the optimality conditions are

ap(t) = —apmsgnl,, (3.40)

a.(t) = —a.msgni,. (3.41)

The adjoint equations are easily integrated to yield

MO = (=), Y
A(2) = y(ty) = const. : (3.43)

It is, therefore, clear that
sgn‘z\u(t) = sgn y(t;) = const. .(3.44)

Subst*u*ing eq. (3.44) into eq.(3.40) and eq.(3.41), and er.(3.40), (3.41) into
eq. {3.33) and eq. {3.34) yields a simple set of differential equations whose solution

may be written as

y(ty) = wolty —to) — %(apm — aem )(ts — to)?sgn y(ty), (3.45)

which can be used for determining y(ty). Thus, we have

— 42 - 3 2
y(t,) - (tr to [z Ztg (aprn aem)] f——(‘y-to')(z:fm_am) > 1
DL R, —_— M _____Q_— _
[!l“uto aPm acm)] f (t]—to)(avpm"aem) 1.

Substituting the above equation into eq.(3.40) vields the control for the pursuer

as follows '

—apm if gy > 1,
ay(t) = { pm if a; < -1, (3.46)
Ge+t—lf_£‘£oﬂ if-1<a; < 1,
where
a _ 2‘00
! (t[ - tO)(apm - aem),
t
PN %)

ty—to



3.5.2. Solution By Using Neural Networks

From the last section, we know that the differential game solution, for q, is

-~

ap(t) = —apmsgnly(ty)].. (3:47)

The one-player paradigm algoritﬁm will be used for our study in which a, is either

a fixed value or a continuous. function of time (see Figure 3.7).-

e
A

v
—

Figure 3.7: A Typical Function for a.

In what follows, we assume that a.(t) is an independent varia.ble. We shall
show that the control strategy a,(t) for the pursuer is actually a function of a(t).
From eﬁuation (3.47), one can readily sce that a,(t) is constant over the interval
(to,ty). The sign of a,(t) depends on the sign of y(t;). Therefore, the explicit

expression for y(t) is necessary.

From eq. (3.33), we know

Co(t) = olte) + /ttap(r)d'r—- /"a,(r)dr, (3.48)




which yields from eq. (3.47)

v(t) = v(to) — apmsgnly(ty)}(t — to) — /t a.(7)dr.

to

Letting

we have
u(t) = v(to) — apmsgn[y(tf)](t‘— to) — @.(t).
It follows from egs. (3.34) and (3.50) that

y(t) = /tv(r)d-r

to

[ (t0) = apmsgalu(t)l( = to) ~ ()l

I

= o(tolt~ to) = Legaly(eplft ~ 1o = [ alr)dr

Let

which is equivalent to

a(t) = / au()dr

]
t r

/ a.(p)dpdr.
o Yo

13

It follows from egs. (3.51) and (3.52) that y(t) depends on the time function a.(t)

(to < t < t;), which further implies from eq.(3.47) that a,(t) (to < ¢ < t;)

depends on the function a.(t). This observation further justifies the statement of

phase 3 in the general configuration in Section 3.1.




Next, let us consider the optimizationAproblem

min J(t09 ap7 66)7 . (3.53)

Gp .
subject to v = ap(t) — a., v(to) = vo, (3.54) .

j=v, y(to) = yo. (3.55)

Its solution is denoted by a;(t), which is a functional of a.(t). Please note that in

this optimization problem a.(t) is the estimate of a.(¢).

“We further consider the optimization problem |

max J{to, a}, ac) | (3.56)
“subject to v = ay(t) ~ a.(t), v(te) = vo, (3.57
y=v, y(to) = vo. (3.58)

If we can denote sgnfy(t;)] by S,.(t) which apparently means a functional of a.(t),

it is interesting to see that
ay(t) = —apmSa.(t), (3.59)

and thus the system equations for the optimization problem (3.56), (3.57) and

(3.38) becomes

P
= —=apmSa,(t) — a.(t)
= fla.(1)), (3.60)
and
vy = v(t) (3.61)
ol A el - . .
A e -
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~ Therefore, we know from eq.(3.60) that the optimization problem (3.36), (3.57)

and (3.58) now becomes a nonlinear optimization problem even though the original
one is linear.

Solving the above nonlinear optimization problem for an arbitrary function

a.(t) is usually very diffictlt. In our case, we only consider the fcllowing function
a.(t) = —a.sgnly(ts)], (3.62)
where a. is assumed to have an arbitrary value between zero and a.n.
Substituting eq. (3.62) into eq. (3.52), we have

t T
at) = - [ [ acsenly(ts)ldpdr

= —aesgn[y(tf?]%(t - to)?, (3.63)

which, together with eq. (3.51), gives

Yt) = w(to)(t — to) = sapmsgnly(t))(t ~ to)? + acsgaly(tp)l5 ey — to)*
(3.64)

By comparing eq. (3.43) with eq.(3.64) , we can clearly see the reason why we

have chosen this special form (3.62). The only difference between eq. (3.435) and

" eq.(3.64) is that the maximal value of a.(t) is used in eq. (3.45). An immediate

benefit from this difference is that the formula of how to determine the sign of
y(t) has the same form as that of the last section. Thus, by replacing a.m by a.,
we can use the eq. (3.45) to determine the sign of y(¢;). Although we have such a
nice representation when the special form (3.62) is used, we do not have to confine

ourselves to it. In fact, any type of integrable functicn may be used for a.(t).




3.5.3. Néural Identifier

From previous subsections, it is known that a,(t) is a functional of a.(t). Thus.
identification of a. is essential for our work when a. is unknown. In this subsection.

the identification is accomplished by a Neural Identifier which is rezlized by a

trained neural network.

In our problem, a neural identifier is a generic mapping between two domains.
The first one is the Environmental Information Domain (EID) which is usually
accessible. For our problem, the other domain is the one-dimensional space R
if the systém which we are considering is a single-.input control system. The
environmentz] information from EID is usually the numerical values of observable
state variables or curves of state variables. The mapping is so defined that for éaéh
piece of information from EID there is one and only one point in R Which uniquely

determines that piece of information. The function of the Neural Identifier is thus

to determine the point in R which yields that piece of information. The way to

determine the point in R yielding the environmental information is essentially
the method of ti'aining the newwork. We shall discuss the Phase-plane training
method, which will be used in our simulations.

Phase-plane Method

The function of the Neural Identifier is to estimate the strategy for the evader.

a.(t), based ca the environmental information. In view of the fact that a player
performing identification cannot make any control decision, we may assume that

a, = 0 (or any other real number) during the Identification Process. Then, we

have the following simplified system equations

v = —d, ‘ (3.65)




which yields

and

Figure 3.8: General Diagrarﬁ for Neural Identifier

LT

Environmental Information

\ a,.
= y(to) + v(to)(t — to) = —-(t — to)*.

y(t) = y(to)+/:v(r)df

= ylto) + /::(v(t") —~a.7 + a.to)dr

Substituting eq. (3.67) into eq. (3.68) gives

Denoting

y(t)

y(to) + v(to)(—

Ay(to)
Avto)

(1) = elto) ) _ o (u(8) = v{to))?

a.

U(t) - U(to),

(3.66)

(3.67)

(3.68)

(3.69)



we have

Ay(to) = “v(tO)Av(fo) - —"I"sz(to)g ©(3.70)
: , a, 2a,
which yields
- 200\ (1) + 20(t0). e

% = T2Xy(t)

Equation (3.71) represents the relation for idehtifying the enemy’s strategy.

-
|

v(ty)  Av(ty) Ay(ty)

Figure 3.9: Phase-plane Method for Identification

As fner{tloned before, typical types of envircnméntal information are the nu-
merical values of the observable state variables or the curves generated by them.
A trajectory of phase plane for positive values of a, i; ‘s‘-hown in Figure 3.10. Ev-
ery time a pursuer performs the identification using the Neﬁral Identifier only
the increments of state variables y(t) and v(t) at the time when he begins the

identification and the value of v(t) at that time are fed into the network. The

ou‘put of the network will be the estimate of ..
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Figufe 3.10: Trajectories In the Phase Plane

3.5.4. Training the Network

A diagram of the Neural Identifier is depicted in Figure 3.11. As mentioned above,
we will use the Phase-plane method to generate the training set for the Neural

Identifier. For our convenience, we rewrite the formula as follows

Aty

—2Ag‘°(A6lo +2i}to)! (3'72)

a =
where the quantities Ao, b, and Ay, are used in place of Avy,, vy, and Ay, for
the reason below.

The reason why we would use 9y, AT, and Aje, in place of vy, Avy, and Ay,

for identifying the strategy a. is that the information coming from any practical




Vo —
A"tr"‘——* Neural Identifier b—— é\c
Ayto—-—-—->

Figure 3.11: Block Diagram fnr Neural Identifier

system is always corrupted by some type of noise although the noise might be
small. This substitution is illustrated in Figure 3.12 where the observable state
variables are converted by some device, called device “I”, into some variables

suitable for the purpose of identification.

At
l Noise Noise Noise
_ Observable 4 i .
2. —== 0 &%.,| Neural a
——| System |—-» . I E;_:_.QI o—4i.,, | Identifier —
Figure 3.12: Structure for Generaﬁng the Training Set
In the ideal case in which the noise is zero. i.e. Ty, = vy, ATy, = Ary,,
A'g.,, = Ayy,, we shall have from cq. (3.72) that
a Af‘to - -
: = N (AF 2
a. 2.’3}]“(‘3“0 + 204)
Av,o
= 2Ay‘° (.&Lgo + 217‘0)
Av,o 2(1,
- 2 (Avto + 2LIO)( Avto(gav‘o + Avto ))
= aq,. (3.73)

Thus, 4, becomes a, in the ideal case. The above discussion implies that the

Neural Identifier functions as an inverse system of the original system. Therefore,




it follows that we need-to use the Phase-plane Method to generate the training
set for the Neural ldentifier with noise-corrupted inputs. The necessity of this
assumption will be shown in the following discussion. We know that there will
al\\"ays be some errors, no matter how small they are. between the ideal maéping
of equation(3.71) and the one approximated by the Neural Identifier. These
errors caﬁ be viewed as some sort of ncise added to the system in the assumpticn
that the Neural Identifier is an ideal mapping of equation(3.7"1). Thus, we may
assume that the Neural Identifier is an ideal mapping for the equation(3.71),
and the errors between the ideal mapping of the equation (3.71) and the actual
identifier is due to inputing imperfect information (corrupted by noise). This
idea provides a basis for the method of generating the training set for the Neural
Identifier. We simulated the noises by geherating some random numbers with a
given variation. The randox'n numbers are assigned to vy, and thus &, is obtained.
Note that Aty = ..vy = -1 since a, = 1 and @, = 0 during the Identification
Process and A, .is the output of the system driven by a, (see Figure 3.13). The
values of ¥y, Ay, and Agy, are put in each input line of the training set and the
value computed using formula (3.71) is the desired output of the Neural Identifier,
corresponding to those particular ¥y, A%y, and Aj,,. Repeating these input lines
and desired output lines forms a training set for the Neural Identifier. Please note
that. instead of trying to approximate a mapping of eq. (3.71) for arbitrary inputs.
we approximate the mapping with some specific domains which are the outputs

of the original system driven by a..

The structure and parameters of the Neural Identifier are summarized as fol-
lows:
Type of neural network: Hetero-Association,

Control strategy: Backpropagation,
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Learning rule: Delta-rule,
Transfer function: Sigfnoid,
Scale: 1.0,

Summation: Sum,

Learning rate: Coel = 0.9, Coe2 = 0.6.°

random
number noise -
observable ‘71
a, states | -2 -
———| System > I ——— AV, (==1) i
— Aylo

| Figure 3.13: Generating Data for Neural Identifier

3.5.5. Simulation Results

The simulation works are done in a Sun 4/260 workstation under the en‘vironment
of UNIX. All programs are written in C and the outputs are numerical values. The
parameters of the system used in the simulation are summarized in Table 3.1. In
our simulations, the value of a. is fixed and the pursuer is fo identify fhe value ..
As shown in Figure 3.14, the simulation is carried out in §everél different periods
(that is, period 1, period 2, etc.). In each period, the index islincremented from
one to the maximum value state_I_limit. The goal for the pursuer is to compute
control values based on the estimate of a. such that the value of y at the end point
of each period is minimized. In each individual period, the first interval (denoted
by I'in Figure 3.14) is for the puisuer to obtéin the estimate of a. and, in our

simulation, a, = 0. The maximum number of periods in entire simulation is the

+




greatest integer less than global_time_limit. Therefore, our simulation is virtually

different from that in the original work.

» Time

1 Period 1 | Period 2 Period 3 |
— 2 a2 § 1 1 3+ 1 11 I T 1 1

'

! =4 55 =l =2 =3 =4 isS

1 . \ i ] i i
izl i=2 i=3 =4 Q=5 =1 =2 =3

Figure 3.14: Simulation Periods

The flow chart of the program is shown in Figure 3.16.

Table 3.1: Parameters Used in Simulation

a. 1.0
stage.d. limit 5
global_time limit | 5
Apm 2.0

For comparison of.the ideal case where there are no noises with those corrupted
by noises of different variations, we have done the following experiments. They
are:

Case [i] No neural networks, no noises, (simu_back.c,
see Figure 3.15 (a)):

Case [ii] Noise with variation of 144 for ry,. (simu3.c.
sce Figure 3.15 (b)):

Case [iii] Noise with variation of L1l (uniform distribution [-G . 6].
for v,, and noise with variation of 0.0 (uniform distribution

 [-0.1,0.1] for A, (simud.c, see Figure 3.15 (c)):

Case [iv] Constant (- 5.0) disturbance in v,, and constant (+ 3.0)

disturbance in A, (simu3_d.c, see Figure 3.15 (d));

Case [v] Comparison of the following cases (see Figure 3.18):



(a) no disturbance (solid line).
(b) the case [iv] (dash line),
(c) same as case [iv] except that -10.0 for v,

and +10.0 for Ag,, (dashdot line),

Case {il: sjmu-baclg.c , 4 rCasz: [iil: simu3.c

’ e 1 A _4 1 - . - A
.40 - 5 10 15 20 0 5 10 15 20
: (a) time ‘ ' (b) time
P Case [iii]: simud.c . 4 __simu3dc

(c) time (d) time

Figure 3.15: Simulation Plots for Differential Games with Neural Networks

é The output data for these different cases are shown in Tabie 3.2. In Table 3.2,
a. denotes the estimate of a. and a; is the optimal control value for the pursuer.
Using the parameters in Table 3.1, we know that at steps 0, 5. 10, 15, 20 the
pursuer gets the estimate of a.. Then, in the first period (step 1 through step
: 5), in the second period 9step 6 through step 10), in the third period (step 11
: through step 13), and in the fomlxrth period 9step 16 through step 20), the pursuer

computes the optimal control value a; fro each of these periods. The values of the
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states v and v are also gievn in Table 3.2. Shown in Figure 3.15 are the curves
plotted using Mat-lab software. The codes for the five cases are similar except f{or

minor differences.

Table 3.2:

Output Data for Simulation

. Simu_back Simu3 Simu4 Simu3_d
ime_step 2o| Y| v I8 [aply [ v L& I aply] vIig laply |V

1 1062 05 {10 {ossm [ 1ses] o5 [ 10 [osm | vsn| 05 | 0 [oows | jsss| s | 10

2 13621 1219 10438 | goo9 | 1562 | 419 | DA | 05T 134 {0239 | puss | 0995 | 1esp {1221 | Qa2

3 1062 § 178 Logas | 0999 1 1862 1 a3te | 034 | 09T | 1an | 1a3) | o067 | 0995 | 1838 |8 | o018

4 1362 | 0948 | 0680 | ggop | 1862 | 097 | Osts | 0571 | 133 [-1.999 | 001 Joses | 1388] 299 | 0sTy

5 1362 L} 125 | o999 | -2 | oome | 1247 | e9m | 123 -c.:ﬁ 1134 | 0998 | 1338 | go% | 120

6 931} 6% | €28 oo |20 | ocer | 0247 | opex | odas | cane ] gpys joses [ oy ce3f azm

7 en ! o9 o] 299 | amy | osn | 003 0962 | o848 | 0461 ] g0 | 0998 03| osi9]0sin

8 0.781 ) 0813 [&.:ta . 099 | 0793 | 080l | 0197 o096z | O35 | 03ss 10475 | 0998 | ONVI | 074 | Qu82

9 073 | o516 [ou0s o999 | 003 | 0307 | cuaa | asez| OB | opuf 03s | 0998 | 0™ | casa] aae

10 o8t o [053 coso [ 0003 | coos | v6xt | 02| OM8 1 4ol ouas | 0998 | aves Loaryr] 050

11 1993 1 <1228 [.1828 0099 | 1951 1 a0 | asst ] o 189 | -3t .aaas ] 0.9 | 1039 [-LI3e {.1396

12 1983 { a3ty [ 967 099 v | aavel o6y | ogee | tae [ 3232010894 poos | a8 2260 |t

13 190 1 2aed | gom1 0999 | 19t | zaer [ 00| 08 | ougy | 247 096 | 0908 | 1915 |.2uss | 03°4

14. 199 | aomnn [ ezsal 0999 | 1S ) e 12 | com | 109 [atat) iggr | 0eos | 1938 [ans | 12w

15 L9S3f 0 lmae, 0% | 0951 [ go0s | W [ ogee | pag |90 [ ncrr| o908 | 1938 LOI9] 2pyy

16 ai9s | 1549 | List ! ovee | 053 nes | 1as ] 090 | ola } il e | ooes | oy 1608 | 1143

17 0499 | 247 foa3 | coom | 0:90 | tu86 | o300 | esn | sz | 2397 [ onas | opes | 0333 2399 | a3es

18 0198 | 2us3 [ €330 099 | ouop | 2asr | 30 | 051l oses |1 | a7 ooss | 023 | aspr | 0w
19 0198 | 1629 {1237 6599 | 0100 | 1616 | -toma ) 097 [ 0zaa | pamr g feses | 03] 1sm st
20 .95 [ 0 3631, 0959 | 049 | oaes | .22 | e9tr | ozas | 0290902 ] o998 | OZI [ B0 hqs

. i T S - e

- ‘—5- e T ‘-""";’_" T b ST - L S e .
p P -7 LLEETL e e 7 ) ]
ot . - T e - ) - L
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Figure 3.16: Flow Chart

3.5.6. Discussion and Conclusion

As mentioned before, the goal for the pursuer is to minimize the values of y
at step 5 (for the first period), at step 10 (for the second period), at step 15
(for the third period), and at step 20 (for the fourth priod). For comparison,

the simulation result for the same problem without using neural networks is also

%
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given (see Stmu_back). As shown in Figure 3.135. there always exists a jump in v
between the beginning and the end of each “Identification Process™ (please notice
that the values of y(5) and y(6), the values of ¥{10) and y(11). and the values of
v(15) and y(16), in each of the first four cases). This is because we set a, = 0
during the ‘_‘Identiﬁcation Process”, therefore, the system runs freely. One may
argue that the magnitude of the jump in y in the “Identification Process” can be

reduced if we keep a, at the previous value, instead of zero. But it turns out not

to be true (see Figure 3.17). (0 wormevu. onsi reve

| STATEy

‘0
e 2 4 . ] 0 12 14 16 18 0

Figure 3.17: Programs Simu_back.c Without Previous a, and That With Previous a,

Different simulation results will be compared here (see Figure 3.15 .a.nd Fig-
ure 3.18). The result for program Simu3.c exhibits the best performance among
the experiments done in the sense that the value |y(t})| has achieved the mini-
mum (see v(3), y(10), y(13) and y(20) respectively from the table). The results
are reasonable because in program Simu3 only the quantity A%, is disturbed by
some noise while in program Simud.c both quantities of A%, and Ay, are dis-
turbed by noises. and additional constant disturbances are added to v,, and Afy,

in program Simud.d.c. The results are also explained partly by the accuracy of
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the estimate of a,, i.e. G,. Since the program Simu3.c has the highest accuracx

it has a better performance than the others.

S gt g sb o visimu_back
o et
-y e gy

SrAlE,
o
o_ L
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™
23 38
< oo dist < simu _back
3 - '§‘mo (3 3 wrsimu
.~ IH.J‘O LR 11,171
s 139
13 g
, ot . 93
* ash a3
b Bld
NY] BElZ
2 “2p
29 a3
() H ) . . . 11 w B ® ( 3 ) [ [ [CINNT ) " i ]
e ™ma

Figure 3.18: Comparison of Simulation Results

The snmula.txon results show the fea.snbnlxtv of th:s a.pproa.ch One may like
to apply the alcon..hms presented in thls worl\ in some more comphca.ted cases:
highly nonlinear. corrupted by noises or even with uncertainty. What should be
kept in mind is that both sides of the game can implement the same process.
Therefore. in some sense, whoever has the better information about what his
opponent is doing or a xﬁore accurate estimate of his opponent’s strategy would
eventually win the game, Using the principle outlined in the general configuration
of this chapter, we can also implement the other algorithms presented in this
chapter. e.g. “Two-player Algoriﬂ‘.m", in the same or even more complicated

systems. When carrying out this further research. we should always keep in mind
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that the approach presented here is no longer the same as traditional approaches
to differential game problems. It deals with a broader range of problems because
it allows both sides of the players to take ANY strategy. For this reason, it can be
expected that more properties exist about the optimal trajectories, controls and

feasible sets, which may also be a direction for further.research.
3.6. Learning Algorithm of Feedback Control

In the previous seétions, the approach to differential games with neural networks,
different paradigms and a case study example have been thoroughly disétflssed.
The approach is based on the paradigm of semantic control(76]. Two ﬁeural
networks, called Neural Identifier and Neural Controller, were used in each of these
paradigms. The neural identifier identifies the control strategy of the oppt?ment
player based on the environmental information. The neural controller, 0;1 the
other hand, gives the control strategy for fhe own player. The subsequent sections
mainly discuss how to construct and to train the neural controller. A rigiorous

mathematical derivation for weight updating rule of the neural controller “f;'ill be
: I

given.

In (7], a feédback control law in the class of L-layer neural networks is given
to control the discrete-time system such that viability conditions are satisfied.
The viability conditions are described by a subset K of the state space such that
dr(Zns1) = 0 for all n > 0, where di(z1.41) is the distance between the state 744
and the subset K. The strategy underlying the external algorithm is to apply the
gradient method for the minimization of dx. The network learns or will learn

whenever the states lie outside of the domain K.
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An extension to the differential game problems is considered. Based on the
one-player paradigm described in Section 3.2, a differential game problem can be
converted to an optimization problem provided that the estimate of the control
strategy for the enemy has been obtained. A similar approach to that in (7]
will be used for the differential game problems discussed in the previous seétiong.
However, instead of minimizing dg, minimizing an arbitrary cost function J is
considered. A detailed formula for updating the weights for three-layer networks

will be given..

3.6.1. The Updating Rule

Let us now consider a discrete-time version of the differential game problem,

defined as follows
max min Jn+1(Xn+1,¥n, én), _ (3.74)
subject to the difference equation

Xn4l = f(xllq lbn, ¢B)1 Xo is given, (3-75)

“'here én = (¢l.nv"'v¢l.n)s d’n = (df‘l.n»""vm.n)s Xn = (Il.n~22.n""qzd.n)y

vn € WY, én € B, xpn € X, Xis the state space. W and ® are the feasible subspaces
in the control space Z for vhe control strategies vy and op respectively, and f is a

C?! mapping from X x Z to X.

We can define a quantity J,_,, ; , belonging to a subspace of the value space

of J, as follows

J,

n

+l.’1.m(xn+1s¢n) = Jn+l(xn+1,72’n, d’n)’ (3.76)

where t[’n is the estimate value for v¥y.
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Having obtained J, ,, ; , we can state the original problem as follows

n

“d}‘iln Josi g (Xns1.0n) = f'g!l‘ﬂ Jns1(Xn+1+ ¥n, én), (3.77)

subject to

xn+1 = f(xi’lv ‘Z‘lh én)! . (3.78)

where o € ®. We are now trying to find o, such that nt1.0s(Xn+1,On) is max-

imized. A feedback control law is obtained through an L-layer neural network

én = BL(Wi(n), Wa(n),- -, Wi(n),xa), (3.79)

where & (W;(n), Wi(n), .-, Wr(n),xn) denotes thg propagation of a signal x in
a neural network, .and Wi(n) is the synaptic matrix associated with the network
layers k-1 and k at step n. Let us denote the layer i by P* and the number of nodes
for layer P' by n;, i=0, ...., L. For a single input control system, the nurﬁber of
the output for the neural network should be one, that i<, nj, = 1. Using the same
notation, we can easily see that W;(n) € R™*™-1, i=1, ..., L. For compactness,
denote the weight matrix by W(n) = (W(1), Wa(n), ..., Wr(n)). Each W,(n) can
also be written as W,(n) = (w];(n))nyxng_r, 1=1, ..., L. Moreover, let us define
the output of the ith neuron in the jth layer by zJ. Thus, the output of the first
neuron in the last layer should be denoted by zf. The transfer functior for the
ith neuron in the jth layer is denoted by gj_l(.). Thus, if we consider a single-
output network, the transfer function for the single-output neuron is g} _,(.). or

for short, gr-1(.). For our convenience, we also use the ompact form g.(.) to
denote (g1 (.), -+, 9z%(.))-
Having these notations, we can define a gradient learning rule, which is actually

the back-propagation learning rule,

oJ ..
) = wl(n) - al,—ntl¥n
wji(n +1) wli(n) — af; ()" (3.80)
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where a]; is the gradient step factor. For this standard formula. computationai

. . . s A ' "y e
burden is mainly the calculation of —aﬁi(;%)“ whose computational load will increase
. 3] .

| dramatically as L becomes larger.

For simplicity, we only consider the case in which the system (3.75) is a single-

input system. In this case, ng = 1. Note that

0,14 20,14 afk
e = T . (3.81) -
dwli(n) 21 Oz (ner) Fuli(n) ( )
and ‘ - '
Ofc  _ 8fk 9% - (3.82)

Owf(n) ~ Béin ow); - ' :
Therefore, the key step is to compute E.,a'#fﬂ which contributes the most heavy
5}

computational load. We only consider the case for three layer and single output

network since it is the most common case encountered.

'At step n, the outputs of neurons in each layer are given by

o
Ix = T1,n,

8
ao
i

zd'n,.

4
Il o= gé(Zw}k(n)rk',,).
k=1

d
1 1
In.l = g(’)‘l(z wn,k(n)-rk.n)e
k=1

ny
2
2 = gi(} wi(n)zi),
k=1

7y
zh, = G2 whi(n)zh),
k=1

na
3
2 = g% uhim)
k=1




For simplicity. we will igriore the dependence of rj,i =0,...L.j=1.....n,.0n the

integer n. In what follows. we will derive the formulas for computing quantities

=22L_ Again, for simplic*y, we drop the rotion n in w;(n) and write w) (n) as

}f For n=L. we have &, = gL 1 (WL XL = gp (S04 wha L-1) "where gr_, 15
l% the transfer function for the output layer, which is usually a sigmoidal function.
and XL-! = (zf7'....,zk7! ). Elementary calculation yields
9% B 1y gL-t
—F = wiTe )Ty (3.83)
aw{,] Z 1k*k J |
For n=L-1, we similarly have
&, = gra(WLX )
NLw1
= gri( X wizm ™), o (389)
' '.: and

XY = g (Wi XET)
r L~-1
Iy

| % : . L1

\ =% L L~
| ] r np-z  L-1_L=2
o gL Tt w2 )

= - (3.85)
!L g[’:Lll(z:‘—le Wy, . l:InL—z)
" s Thus,
aq’L = L 61’L !
Juwi-t = grl }: u‘lkxk \lbl.a L ) (3.86)
ij
azl-1 .
where Sr=r can be written as
9
k! nL-2
aw'L—l = gi Z wi 2)3L 2 (3.87)

i
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For n=L-2. we similarly have the following set of equations

&, = gr1 (WXL

Ny

= gLl L wirl™). (38
' i=1 :
r If_l
\fL-l = .
| 2
[ 9i- 2(2?—1'12“’1. 'r?)
= , (3.89)
LgZ‘;'(Z"“' ,I:L:‘,J.‘L 7y
[ oL-2
XL—2 = :
o
’. 91.-3(2?—'-'1'3 wlt‘. 2pL-3)
= : | (3.90)
g?.':s*(:."fr’ we 2z o
aéb ALt np-t aIL-‘
s = il X wiEt™h (Z whia—t=7) (3.91)
v =1 IJ »
axl;°1 , LY A _ _ [')J;L‘"’
owk."-,ﬂ = 915-2(2 wi e f ) (wi™ 5—5—) (3.92)
. ¥
9r:? = L-3\.L-3 :
ol = gi ol 3 whiekd)ste, (3.93)
U pr=1

Based on the above formulas (3.83) - (3.93), we can compute the derivatives of
@, with respect to w;; for each triple (7, i, j). Below, we consider the following '

special case.




Special Case:

A commonly found case for two-player differential game problems is that the cost
function J is the function of the final state ry. We have only considered the case of
one control variable for both players. Thus, J = Ji(xN. %1, . ¥N.Q1.- . ON)
(refer to the pursuit-evasion game problem in Section 3.5). Both players try to
maximize/minimize the cost function J = Jy(xn, 1.+, wN,.él. -+, ON) subjeclt

to a set of difference equations:

max min J = Jl(xN$¢19'"vaaélv""éN‘)a
(1. ¥N) (€1 0N)

Xn = f(xn—l' én-l» d’n—l)a n=1, 2, vee N,
where ¢; € ® and ¢; € ¥,i =1, 2, ..., N. In this case, the neural control problem

for the case where v is known is formalized as follows:

, min Jl(xN7¢17"'7sz¢la"'9¢N)$
{é1,-@n)

Xn = f(Xn-1;%n-1, ¥n-1)s n=1, 2, ... N,

and the control sequence (¢1, 82, -, dN) isgiven by ¢; = (W, -, WL, xi),1

1,2,--+, N, and the updating rule takes the form

aJ . .
w?J(N) = w?J(N - l) - a?j’é_uj::('r:v’ 1/)1»' v ’d)NyW), (394)

n=12 ..1L,
i=1.2,....n,.
j=1. 2. veuy n,,_l,

which means that updating the weights happens at the (N-1)th step.

3.6.2. Implementation

In order to use above updating rule in real time, an on-line scheme has to be

considered. A consideration is shown in Figure 3.19.
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SN |
4\/ S - I: Identification Process
C: Control Process

. Figure 3.19: Identification-Plus-Control Process

An identification-plus-control period is from ¢y to t3, which has three subinter-
vals: [to, t1j(identification), [t;,tg](updatirig weights), {t2, t3](control). The identi-

fication part identifies the control strategy of the opponent based on the environ-

mental informatioﬁ (see Section 3.5). This process has been thoroughly discussed
in Section 3.5. Evaluating the weights of the network happens in the subinterval
(t11, tan] or [t11,t2). In each of the small subintervals (t1;, ty(it1)]s i=.l,"2,‘ weey N-1,
the weights of each layer are updated. The process is repeated and ends at t;. At

t2, actual control is applied to the system.

3.7. Applications of the Learning Algorithm To the Prob-
lem of Aircraft Control In The Presence of Windshear

The particular prébfe;h we are consi‘dering’ here is that of control of an aircraft
encountering windshear after take-off. Much effort has gone into modeling and
identifying windshear; e.g. [23, 100], but only some of it has been concerned with
the design of controllers to enhance the chances for survival. Among these are the
studies of Miele[63] and of Leitman([55], et al. A stabilized controller is proposed

by Leitman in which no a priori bounding information is needed.

In the last section, we already derived the updating rule for the neural con-
troller for the problem of a differential game with neural networks. Since the

updating rule can be applied to many general control problems, we shall use the
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results derived in the last section for our aircraft control problem. We shall present
simulation results also. The simulation results are not only reasonable but also

advantageous over the controller proposed by Leitman.

We use the following notations:

Notation

DY drag force. Ib;

. def o e . -
g = gravitational force per unit mass, ft sec™!;

h % vertical coordinate of aircraft center of mass (altitude), ft;

L ¥ it force, Ib;

def . -
m = aircraft mass. [b fi™! sec?;

def

O = mass center of aircraft;
def

S = reference surface, ft?;
def ..

t = time, sec;

T thrust force, ib;

Ve aircraft speed relative to wind based reference frame, ft sec™?;

W, € horizontal component of wind velocity, ft sec™!;

Wi %l vertical component of wind velocity, ft sec™?;

def . ' .
z = horizontal coordinate of aircraft center of mass, ft;

a & relative angle of attack, rad:

def . T
4 = relative path inclination. rad:
def T
§ = thrust inclination, rad:

p & air density, b f sec?.




. 3.7.1. The Problem

Following Miele's lead, we employ equations of motion for the center of mass of
the aircraft, m which the kmematxc vanables are relame to the ground while the
dynamic ones are taken relatlve to a moving but non- rotatmg frame translating

with the wind velocity at the aircraft’s center of mass. The kinematic equations

are

= Vecos(y) + Ws,

Vsin(7) + Wh.

The dynamical equations are [53]

mV = Tcos(a+8)~ D —mgsiny — m(Wcosy + thin-y), (3.97)

mV4 Tsin(a + &) — L — mgcosy — m(W,siny — Wicosy), | (3.98)

where T = T (V) is the thrust force, D = D(h,V, a) is the drag, L = L(h,V,a)
is the lift, and W, = W, =(z,h) and W), = Wy(z,h) are the honzontal and vertical

wmdsnears, respectxvely In these equahons, z(t), h(t), V(2), 7(t) are the state

variables and the angle of attacl\ a( ) is the control variable.

A discrete-time version of equations (3.97) and (3.98) is given by

Vier = fr(VeeThs Dicy oo Wk Wik, i)

Ticos(ax +8)At DAt
m m

= Vi + — gsinvy At - (W,kcos‘yk + W;.ksin‘yk)At.

(3.99)

er = fa(Ves Tay Ly Ty Wieky Wi, i) .
_ Tisin(ax + 6)At  LiAt  geosyiAt  (Wersiny — Wakcosyi) At
mVi mVi mVie Ve '

(3.100)
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where the notations W,k, th denate the variables W,(t), Wh(t) at the time t =
k. Our goal is to design a controller @ = oy such that the quantity [hyy; — iz,}2 is
minimized, where h;4; is a value calculated from Viy; and a4y and h,is a given

value. The cost function is given by
Jk+1) = (Vigisinyes — h,)2 | (3.101)

The neural controller is designed so that the weights update at each step to

minimize J(k + 1).

3.7.2. Assumptions

The following assump*ions are the same as Miele's[33):

1) The rotational inertia of the aircraft and the sensor and actuator dyngmics are
neglected.

2) The aircraft mass is constant.

3) Air density is constant.

4) Flight is in the vertical plane.

5) Maximum thrust is used.

3.7.3. Bounded Quantities

In order to account for aircraft capabilities, it is assumed that there is a maximum
attainable value of the relative angle of attack a; that is, a € [0, a.], where a. > 0.
The range of practical values of the relative aircraft speed, V, is also limited, that

is,

I<
In
<
I
~o<|

(3.102)
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SRS where V. > 0 and V > V depend on the specific aircraft[533].
- 3.7.4. Force Terms

- | ,/ The thrust, drag and lift force terms can be approxim‘éfed (35] by
e T = A+ AV+A4V2 (3.103)
. ‘—_ <t , l . .
e D = ECopSV’. o (3.104)
| ‘ = %C,,psv’, | (3.105)
| where Cp = By + Bie?, Cp = Cy + C1a. The coefficients A, 4;, A2 depend
- on the altitude of the vrunway, the ambient temperature and the engine power

) setting. Bo, By, Co,C1, on the other hand, depeas ca the flap setting and the
/ s _undercarriage position.
A 3.7.5. Windshear Model
I In this work, we utilize the windshear model [55] described by the following equa-
! fo
) e tions s
- - e
o We = —Wiosin(2rt/To),

Wi = =Wio[l - cos(27t/T5)}/2, (3.106)
B where W0 and W), are given constants, reflecting the windshear intensity and To
/ is the total flight time through downburst.

3.7.6. Controller Design

We employ a neural controller with one input layer of four neurons. Thc input

variables to the network are V,V,v,4. The contrel output is given by a; =




106

o(uw(V - V(0)) + w,V + w3(y — ¥(0)) + w4¥), where the initial values V(0) and

4(0) will be given in the next subsection. The threshold function ¢ is the sigmoidal

function T(z) = A

—1
14e=9%"

where g is a design gain and A is saturation limit. In

our study A = a.. As discussed before, the formula for updating weights is

wilk+1) = wi(k)-a

aJ(k+1)

aJ(k+1)
' 6w.(k) '

where -31%'—(—,‘—)1 is given by the following set of equations

8J(k +1)

dJ(k+1) 0¢

Oow;(k)
8J(k + 1)

6a;, aw,‘(k)’
aJ(k+1)df2(.) + oJ(k +1)dfi(.)

day
aJ(k+1)

0vk+1
aJ(k +1)

Vi
dfa(.)

a“/k+1 dayg 3Vk+1 day '

2(Visrsinesr = he)Visr1€087k41,

2(Vi15in7ks1 — he)sinyesn,

afz() + af2() aLk

dag

9f(.)

aak BL,, aak !

fay

8fa(.)

T At
1 cos(ax + 8),

At

0L,
oL,
day

dfi(.)

mVi’
-;—ClpSsz,
ofi(.) + dfi(.) 9Dx

doy
0fi(.)

6ak
9h()

oD,
9D,

Bay,

6ak ODk t)ak '
TkAtsin(m,. + 6),
m

_At

k)

m

%B]psvkz.

(3.107)

(3.108)
(3.109)
(3.110)
(3.111)
(3.112)
(3.113)
(3.114)
(3.115)
(3.116)
(3.117)
(3.118)

(3.119)




3.7.7. Numerical Data

As a specific model, we use one model for a Boeing-727 aircraft with JT8D-17
turbofan engines. We assume that the aircréft has become airborne from a runway

located at sea-level. The data are identical to those of Miele

1

N

D e ey

i
v
~—

Qa.

Ao
Ay

A,

Bo
B,
Co
Ci

mg

=<

1
At

1l

I

16°,

3°/sec,

44564.0 (b,
~23.98 Ibft~1sec,
0.01442 lbft";ec,’
2°,

0.002203 Ibft~*sec?,
1560 ft2, |
0.0218747,
0.6266795,
0.2624993,
5.3714832,

180000 1b.

184 ftsec™!,

422 ftsec™,
0.001 sec,

33.6807,
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while the initial conditions are x(0)=0 ft, h(0)=50 ft. and V(0)=276.8 ft/sec.

+(0) = 6.989°.

3.7.8. Simulation Results

Numerical simulations were carried out for the case where the windshear intensity
is W}dWho = 50/30. Simulation results show that the neural controller performs -
well in the presence of wind. From the windshear model, we know that in the first
30 seconds the horizontal wind blows against the aircraft. In the frist 20 seconds,
the aircraft gains the altitude. As the wind becomes less strong, the lift of the.
aircraft decreases and the aircraft gradually slows its climbing rate and begins
losing it altivude at the 20th second. To compensate this, the angle of attack
increases correspondingly. This is shown in Figure 3.20. After the 30rd second,
the horizontal wind blows in the direction of the aircraft which continues loos:ng
its altitude even through the angle of attack increases to try to compensate the
loss. As the wind becomes less stronger from the 45th second to the 60th second,

the aircraft increases its altitude.

Under the same conditions, the neural controller works better than those of
Leitemann’s and Miele’s in the sense that the control value reached the satured
limit (in this case 16 degrees for the angle of attack) for only short period of
time. The performance of the aircraft is almost the same as that of Leitman.
That is because the angle of attack did not reach high enough from the 45th
second to the 60th second to compensate the loss of the altitude of the aircraft.
The reason is that the greatest descent algorithm has low convergence rate. To

improve the performance, one should consider using an optimization method with
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(

a higher convergence rate. In fact. this is one of our further research directions.
For a windshear with stroﬁger wind intensity, e.g. Wyo; /o = 80/48. we need
to adjust the four weights accordingly. With this type of neural controllers, the
performance depends on the ;ens‘itivity of the gradient of the cost function to the

change of the measure error. With a suitable choice of learning rates ai, a3, a3, ay.

the performance should be improved.

.ml /\\

i
" ) |
) 1000 2000 3000 4000 3000 4000 7000 800
TIME (2 0.01 poc)

CONTROL VALUE - degree
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|
Figure 3.20: Sx)'nulatlon Results For the Aircraft Control Problem
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4. :
Optimal Control Problem in the Layered Defense Project

4.1. Introduction

In this chapter, an zipplication of artificial intelligence methodology, more exactly,
a rule-based expert system, in a class of pursuit-evasion game problems based on
the Semantic Control Theory will be discussed. The object of this effort is to
apply the principles of the semartic control theory to situation assessment in a
layered defense system. A tactical decision aid has been developed to assist its
user in the selection of heading, speed, anc countermanuevers in the presence of a
real or potential threat. The project, started in June, 1991, is a cooperative effort
of the Center for Semantic Cbntrol, Washington University, and the Electronics

and Space Corporation and has been proven to be successful.

A game problem of multi-pursuer, single-evader is the main one for this project.
The following players exist: one evader, also termed Ownship. several pursuers.
and a limited number of sha\‘dowing players engaged in the game situation. There
are two types of pursuers: [1]\ primary pursuers which usnally represent aggressive
aircraft, equipped with air-t\'(\rair and all-aspect missiles: [ii] secondary pursuers
which trpically represent the offensive missiles launched by primary pursuers.
Both primary pursuers and the evader have the capability of spawning shadowing
players which represent passive objects to blind the opponents, such as flairs. Dy-
namics can/cannot be incorporated into the shadowing players, depending on the

types of shadowing players used. The initial stage of the project will discuss the
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situation with one evader, onc/several secondary pussuers and a limited number

of shadowing players for both the primary pursuer and evader.

The TDA has no control over the strategies of either primary pursuers or
secondary pursuers, yet it has the capability of detecting and identifying their
strategies; and maneuvers, mainly by means of Contact Reports. The contact
reports contﬁin enough information about the pursuers and the evader, such as
location(coordinates), speed, heading, bearing, etc.,'all of which can be processed
to assess the situation. The TDA receives the Contact Reports evéry fixed period

of time so that new information can be updated periodically. While the human will

assume the role of the coﬁtrdller, the functions that the TDA will have to perform -

are [25] obté.ining data from Contact Reports and updating the player information,
ﬁsing new information ‘to assess the current ga.mé situation, etc. Processing new
information from the contact reports includes updating the information about
each of the players and storing the old information on each p_layef to an instance

of the class OLD. Once the process is finished, a role or the optimal control

strategy will be used to govern the next movement of the evader. A detailed

discussion is given below.

As shown in Figure 4.1, the structure of the TDA is organized hie.rarchically.
Each player in thevTDA .is called an object. Typical exainples of objects are the
primary pursuers, the secondary pursuers, and the evader which are also instances
of some appropriate class. Each object belongs to one class which is organized
hierarchically. Each class is a subclass of its parent class, and all classes are the
subclass of the root class called “ROOT”. Each object has its attributes, stored
in memory called “Slots”, which are either inherited from its parents or lccally

resident. Associated with each object are the rules, methods, and functions which
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can be used to interact with objects. The information about each player of the

game, capabilities for each player, and game situation are all stored in the slots
of each player. Table 1.1 summarizes the slots for the primary pursuers and the |
evader. An object oriented formulation is selected because it allows incremen- ,
tal refinement of its situation assessment, knowledge of pursuer’s capability. and

evasion strategies.

Secendany
Pussuer

0O:d

Figure 4.1: Object Hierarchy

Table 4.1: Table of Slcts

Player X-own Puresers. S.-.a‘dczs-:.g

Flavess

Fosizon Lifeime Effeciveress Eifeccveness

S=cad Ma)épc-ed :ay

Ranga PercepZon ra¥on

Bearing Max Safe Distance Sratal

Heacding Paric Distarice EifecEveness

Contact ID Number of

Classifieson Shadewing Players

Event

Confidence

The mission of the evader is to depart from Home, while evading the pursuit

3

of its offensive opponent, and to head to a fixed location called “Destination”.

e
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The role of the evader is to assess the game situé.tion, detect the pursuer strategy
if necessary and make a decision based on the updating information.” It does
not assume any offensive capabilities. With this assumption, the TDA presents
suggestiéns of movement for the user’s approval. The vmove'me.nt of 'the evader -
is governed by the rule fired from the rule-hased system or the optimal control
strategy. Whethéf a role or the optimal control strategy will be used depends
on the range between two players. Assuming a fixed distance, we can have more
than one rule to select, in which case a quantity called “utility” f)lays a key role.
A utility is a positive real number scaling from zero to one, associated with each
pursuer. The utility can ke thought of as a measurement of thréat to the evader.
The pursﬁef with the highest utility value is said to have greatest.threat to the
evader and hence should be paid the greatest attention. The utility of the pursuer
depends on five components - range, heading, elevatrion,rspered"ar.‘rrxd beraring - all
of which has been obtained through processing the information from the contact

reports. A detailed discussion of the utility calculation can be found in [25].

Recent werk in the area of Semantic Control Theory [76] provides the means
for our project. In this paradigm, a control problem is broken into three blocks,
namely, Identifier, Goal Selector, and rAdaxr)tor [76). In |this project, the Goal
Selector is designed for the following [i} To select the rule from the rule-based
system based on the information prbvided by the System Identifier, which has
preprocessed data from the Contact Reports, [ii] To activate the optimal control
law based on the information of range, and {iii] To compute the heading for the
next m§vement of the evader. The decision of the Goal. elector depends on
several factors: range, heading, bearing, speed and elevation. When the pursuer
is within a certain distance from the evader, the optimal controlllaw is activated

to achieve a fast response to the situation. In other cases, the Rule-Based system
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plays a key rolé. There are four sets of rules {25]. They are: [i] the set of rules for
the case in which no pursuers are within a specified range, [ii] the set of rules for
the case in which one primary pursuer is within a specified range, [iii] the set of
rules for the case in which one secondary pursuer is within a specified range, and
[iv] the set of rules for the case in which both a primary pursuer and secondary
pursuer are within a specified range. Each of these four rule sets can have several
rules. The rule set appropriate to the situation is made active and used to make
recommendations for safely moving the evader. Which rule will‘be fired depends
on the value of utility associated with each pursuer which represents the measure

of the safety for each player.

The function of TDA is to provide a movement set-point recommendation for
the user. Therefore, a man-machine graphic interface is an essential part of the
project. A human assumes control of the final decision. The Adaptor consists
of four different graphic displays: Action Panel, Control Panel, Local View and
Global View (see Figure 4.2). The Action Panel shown in Figure 4.2(a) displays
the setpoint recommendation for the user, heading, speed and location of each
player and the current rule being used. There are several buttons available for
the user to decide either to use the recommendation of the TDA or to enter his own
command. The Action Panel is updated in real-time so that the user can have
a view of the on-going game situation. The Control Panel (see Figure 4.2(b)),
on the other hand, is in control of the behavior of each player, monitors the
game situation, and has the authority to change it dramatically. The Control
Panel initializes the game, modifies the attributes of each player in the game, and
runs/stops the game. The Control Panel is actually the first display shown to the
user when the simulation begins. Two coordinate frames are used in the project.

They are the inertial frame, which provides a global view for the game, and the




115

frame centered at the speed direction of the evader. who provides a view locally.

Local and Global views (see Figure 4.2) provide the basic dispiays in the initial

stage of the project.
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Figure 4.2: Display Panels

Thre TDA is currently implemented on a DELL SYSTEM 333 DTM Personal

Compnter, using KAPPA-PCT™ and Toolbook”* under the Windows envirn-
ment. For a complete decription of the project and its operation, please refer to
[25]).

In sections that follow, we shall discuss the optimal control problem that
arises from the project. The background for this problem is as follows. The
Lzyered Defense Project's aim is to study, analyze and solve a class of pursuit-
evasion problems and to develop a tactical decision aid. which, in the presence

of a real-time or potential threat. aids its user in the selection of heading, speed,
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and countermaneuvers. An assumption at initial stage of this project is that
there are two players in the game situation: one pursuer and one evader. The
control strategy for the pursuer is generated by the so-called Scenario Generator,
which also provided the Contact Report to TDA. The evader has the capability
of identifying the control strategy of the pursuer but has no control over it. The
role of the evader is [i] to access the game situation, to identify the strategy of
pursuer, and [ii] to take corresponding actions governed by the rule fired from the
rule-based system or by the control value of the optimal controi law, depending
on the range R between the pursuer and him. If R is greater than some given
value Ro, the evader may want to continve doing what he has been doing. While
R decreases to some given value R; with Ry < Ry, which usually represents the
situation that the pursuer is getting closer to the evader, the value of utility for
the evader is high enough to make a rule fired from the rule-based systems. Which
rule will be fired depends on the utility associated with the rule [25]. However, if
the rule fired for governing the next movement cannot improve the situation and
R further decreases to some given value R;, where R; < R; < Ry, an optimal
control strategy is employed to yield an accurate, fast response to the situation.
The assumption that two players are engaged in the game is reasonable since only
one aggressive player shows the highest potential threat to the ownship and hence
will be paid much more attention than others, if they exit, when the optimal

control law is used.

With the line-of-sight model, our problem can be described as follows: given
o2, a control strategy for the pursuer, find an optimal control for the evader, i.e.,
) optimal’ where |oy| < l»l"'xoptimall < 1, such that the range between two

players reaches some prespecified value in minimum time.




4.2. Optimal Control Problem |

4.2.1. Line of Sight Coordinates

A line-of-sight coordinate model has been usea to study the pursuit-evasion game
with fixed role determination [17, 18, 19, 41, 83. 92]. Using the line of sight as
common reference, we have three state variables. These state variables are the
rauge 0 € R < oo and the two off-boresight angles —7# < ¢y < 7, -7 < g < 7
[18. 19). | |

. The equations of motion in the general line of sight coordinates are

R = —(coso +cosds), - (4.1)
4;1. = (sing, + sino2)/R+ o1, _ (4.2)
b2 = (sind, +sind;)/R+ 02, ' (4.3)

where o and o; are the respective control variables (turning rates) constrained

by

lod <1, i=1.2 | O (a4)

The geometry of the engagement is depicted in Figure 4.3.

Figure 4.3: Geometry of the Engagement
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A major element in the differential game formulation is the definition of the
terminal surface (target set). Such a terminal surface represents the firing envelope
of the pursuer aircraft weapon system. The firing envelope of an air-to-air missile
for each player i (i = 1, 2) is a subspace defined by an implicit equation of 3

variables
F(R,0,,a;) = 0, (4.3)

where R is the range (the magnitude of the line of sight vector), and ¢; and oy

have the relation
¢ +a; = . . (4.6)

In [18], Davidovitz et al specified the terminal surface of the game, a speciaLl form

of equation (4.5), as

>

R(t;) Ry

where t; is the final time of the game and 3 is some prespecified positive value.
With this terminal surface, one can evaluate the necessary conditions, which are
used to obtain the optimal contirol strategies. Such control strategies can be
evaluated, using retrointegration, by calculating the so-called optimal terminal
strategy at the terminal surface. The target set eq.(4.7) has been successfully

used for the pursuit-evasion game analysis.

On the other hand, for an air combat duel between similar aggressive fighter
aircrafts, both equipped with the same type of guided missiles, different target sets

are used to represent the effective firing envelope of an all-aspect fire-and-forget




air-to-air missile

-B< i <8, i=12 (4.8)

CR(&)SR<R(S),  j=12]#i, (4.9)

where 3 is the oﬁ-boresight limit for missile firing, while R and R are the minimum
and maximum normalized firing ranges, respectively, given by

.E.-(¢,-) = a; + bicosd;, (4.10)
Ri(8;) = (Ro)i—|¢; + singjl, (4.11)

where a;, b; and (Ry); are the normélised parameters (see [19]).

For our problem, a terminal surface similar to that in (18] is used, i. e. R(ts) =
B, where 8 is a prespecified positive value. In (18], B is spéciﬁed to be less than
the initial distance R(to) since J represents the distance for capture. In our
case,_howevér, Bisa positive value greater than R(1o) since our problém is that

representing escape.

In general, the solution consists of the decomposition of the game space into
four régions: the respective winning zone of the two opponents, the draw zone,
and the region where the game terminates by a mutual kill. Davidovitz et al [19]
presented a qualitative study, the first of its kind. (;f an air combat betweeﬁ two
similar aircrafts equipped with modern air-to-air missiles, which is modeled as
a two-target differential game. Their results of the study also reveal several yet

unknown elements to be expected in later air combat.

For our problem, since the initial stage of the project only discusses two players
(pursuer and evader or termed as “Ownship”), the line-of-sight coordinate model -

is ideal for our quantitative analysis. However, unlike [19], where two aggressive
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aircrafts with all-aspect fire-and-forget air-to-air missiles are considered. we have
a limited number of players engaged in the game: pursuer and evader. To better
model the real-time pursuer-evader situation, we modify the classical line-of-sight

model in [17] to incorporate the speeds of two players

R = —(vpcosdy + vecos97), ‘ (4.12)
b = (vpsind; + vesingy)/R + o, (4.13)
b2 = (vpsingy + vesinga)/ R + 0z, (4.14)

where the state variables R, ¢;, ¢, have the same definitions ag before, v, repre-
I

sents the speed of the pursuer and v, for that of evader. Agajin, the respective

|
i

controls (turning rates) are constrained by

loi| < 1. !
4.2.2. Optimal Control Law ;
| !
The problem can be stated as }
. t |
mirJ = min dt, (4.13)
~y oy Ji, .
subject to
R = —(vpcosdy + v.cos0,), (4.16)
b1 = (vpsingd; + v.sindy)/R + oy, (4.17)
b2 = (v,sindy + vesineds)/R + &, (4.18)

where (R(to), d1(to), #2(t0)) = (Ro, $10, $20) and (Ro, b10, d20) are given and the

control for the pursuer has been replaced by its estimate value &.




Consider the Hamiltonian gi\-e11 by

H = Xo+ Ar(—(vpcosd; + v.cosdy))
/\.__._...1 ; A2 (vpsind)] + vesing;)

+(Aoy + A\282),

+

where Ao, Ap, A1 and A; are the respective components of the gradient vector

satisfying the adjoint equations

. } . A+

Ar = (psingy + vesind)(Ci22),

,‘1' = (-'-‘Ansinm - i\l—;/\zcos¢l)vw
AL+ A,

,i2 = (=Arsing,; —~TCOS¢2)03»

do = 0.
The optimal cont;ol is obtained by
n;lin H,
which yields
oi(t) = —sgnA(t).

Next. we shall state a lemma which will be used later.

Lemma 4.1 The following equality holds

' M+
M+ (22 =

where C is a constant.

(4.19)

(4.20)
(4.21)
(4.22)

(4.23)

(4.24)

(1.26)




Proof:  Differentiating the right hand side of eq. (4.26). we have

/\1 + A, (/\1 + /\2)R - (/\1 + /\Q)R

M+ A+ A
=2[\n IR 2(vpsmé1+v,szn¢2) | 1122 2‘

AL+ A
X ((=Arsinov, — -%—zcosélvp)R

A
+(—Agsingyv, — ! + A €080 ) R

R
+(A\ + /\2)(0,,0030'1 + vecosdz))/ R]

AL+
=2— [)\Rv,,smm + ARU.SINgs — ApUpsing;
L

A‘ /\’2 . Al + A?

7 VpC03P; — ARU.SING, ~ -—R—-v,coség

AL+ Ay
R

+ (vpcosd1 + vecosdy)]

Thus, eq. (4.26) follows.

O.E.D.

REMARKS:

The constant C could be zero or nonzero. If C is zero, Ap(t) = 0 for all ¢t > 0.
In particular, Ap(0) = 0. Thus, we may choose Ag(0) # 0 such that C" # 0. For
C # 0, we can normalize the formula (1.26) such that ‘ .

S VR VO
AL+ ‘; 232 = 1. (1.2%)

Using eq. (-1.17), eq. (4.20) can be written as

/\l + 1\2

An = (vpsind; + vesinody)( B )
A+ A
= (- )R
: A+ A
= (¢ —a1)( l}; 2)
= (b —o)(1 = At (4.29)




Likewise,
A = (1=A)4(d—0a).
Define 0, (t) for 0 < t < t; as
‘ } .
01(1!) = —¢10 —A 0’1(T)dT,
where 0 <t < t; and ¢10 = é1(0), or
0.1 = ;Ul(t).

Therefore,

\ . .
—=E . = b+,
V1= 2%
and thus,

arcsin g = ¢1+ 0, + Co,
where Cy is an arbitrary constant. Eq. (1.34) becomes
Ap = sin(¢ + 01+ Co).

Now for t=0, we have

Ar(0) = sin(o(0) + 0,(0) + Co)
= sin{d1o ~ d10 + Co)

= sinCo.
Thus,

Ao = sinCo.

!
ek
”\/'\"T‘
-

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.36)

(4.37)




i ) B \/T— AL = cos{¢y + 0, + Co).

/\ : Therefore.
: s . A A
Al = —Up(ARsin¢1 + -——}-—;——ZCOS¢1)

= —vp(sin(¢y + 0i + Co)sindy + cos(éy + 01 + Co)coso,)
= —vyco8(dr + 01 + Co — &)
= —vpcos(b, + Cp)

t
= =v,c05(Co — d10 —/0 oy(7)dr).

(4.39)

Without loss of generality, we may assume that o,(r) = o}, = constant for 0 <

T < t1, where ¢; is the first switching time greater than zero.

Then,
M) = M(0) + —Zsin(—éio ~ a5t + Co),
T10
where

0;0 = —Sgn[,\m].

The value of #; can be obtained by letting \j(£,) = 0. In onr case.

- o1, M {(O)e?
(Co = 010) + sin l('—'l,)“m) +
by = - £ , h=0.-1,.--,
T10
and
ti = min ty.
! x>0 1k

The subsequent switching time can be calculated analogeously.

(4.40)

(1.11)

(4.42)




/,”
In general, suppose that {tx:k = 1,2.---} is a sequence of switching times and‘
that
b = é1(te),
Are = Ar(tx).
Me = Mt
U;k = Sgn[t\lk].
Then, on (tk,tk+1], we have
Mty = —vpcos(Ben(t) + Co),
Ar(t) = sin(o1(t) + Orsa(t) + Ci),
t
Orp1(t) = —oulte) -/t o1 (7)dr,
. k
oi(t) = —sgn[h(t)).
Notice that on (tx-1, %], we have
Ar(t) = sin(oy(t) + 0:(t) + Cry),s
and
t
0u(t) = —oy(teet) - /u-_, o1()dr.
Again. on (fx-1. ], o";(r') = 0](4-1) = constant, thus we have
0i(t) = —di(tk-1) = ooyt — tior).
Thus,
Are = Ar(te)
= sin(éi(te) + Ou(te) + Ci-1)
," \ ) /o~ .
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(4.43)

(1.41)

(-£.31)




’\Rk = lim /\R(t)

+
t—t}

= lim sin(é1(t) + Oxs1(t) + Ci)

t-'t:

= sin(Si(ts) — d1(ts) + Ci)

= sinCp | (4.53)
Letting App = '_\Rk yields
sin(Cyx) = sin(@1(te) + Oc(tx) + Cr-1), (4.56)

which is used to determine Cy.

Egs. (4.43) - (4.30) together give an evaluation of an extremal bang-bang

trajectory based on the choice of [Ago, A1g].

REMARKS:
Dependence of the control ¢y on d; is implicit. The corresponding control law can
be evaluated without retrograde integration. Thus, the computation time-savings

is significant. Since the control law is a function of initial values for costates \g

~and Ay, the final timeis hence & function of the initial values of A\ and \;. Various

non-derivative optimization techniques can be emploved to find the optimal values
for Ay and \p. The so-called Box's algorithm will be used for our problem hecause

of its well-known inequality constraints. and nonlinear objective function.




4.3. Optimization Technique

4.3.1. Box’s Complex Algorithm

The Problem

This algorithm is to find the maximum of a multivariable, nonlinear function

subject to nonlinear inequality constraints

max F (1,22, ,ZN) (4.37)
-subject to Gy <z <H.,, -~ k=12,--- N,
jl'("rl‘!‘t?V.'."rN)S‘r‘SE(IIQL‘2$“-'1$.\')\ i=4\'+1~"‘..\[.

where the functions fi(ay, &, x5}, Fi(ry,ra,+ -, xy) are dependent functions
of the explicit independent variables x;,z;,+-,zx. The upper and lower con-

straints H, and Gj are either constants or functions of the independent variables.

Method

- The procedure is based on the *complex™ method of M. J. Box. This method

is a scquential search technique which has prove.n effective in solving problems
with nonlinear objective functions subject to nonlinear inequality constraints, No
derivatives are roqniréd. The procedure should tend to find the global maxinmmm
due to the fact that the initial set of points are randomly scattered thronehont
the feasible region. If linear constaints are present or equality constraints are in-
volved, other methods should prove to be more efficient. The algoritlini proceeds

as follows:

1. An original “complex” of K > N + 1 points is generated consisting of a

feasible starting point and K-1 additional points generated from random




o

numbers and constraints for each of the independent variables

ri; = Gi+ri;(Ii -Gy, (4.38)
i = 1,2+, N, |

L,2,.- K =1,

“.
i

where r;; a-e random numbers between 0 and 1.

The selected points must satisfy both the explicit and implicit constraints. If
at any time the explicit constraints are violated, the point is moved a small
distance §é inside the violated limit. If an implicit constriant is violated,

the point is moved one half of the distance to the centroid of the remaining

points

z;i(new) = (z;;(old) + %;.)/2, t=1,2,---,N, (4.39)
where the coordinates of the centroid of the remaining points, r; . are defined
by

Fie = 1\_1[21.,: r.,uld)] i=1,2.---,N. (160)

This process is repeated as necessary until all the implicit constraints arve

satisfied.

The objective function is evaluated at each point. The new point is located
at a distance a times as far from the centroid of the remaining points as the
distance of the rejected point on the line joining the rejected point and the

centroid

rij(new) = a(Zic~ zijlold)) + T, i=1,2,---,.N. (4.61)




129

. If the new point repeats in giving the lowest function values on consecutive

trials, it is moved one half the distance to the centroid of the remaining

points.

. The new point is checked against the constraints and is adjusted as before

if the constraints are violated.

. Convergence is assumed when the objective function values at each point

are within 8 units for 4 consecutive iterations. An iteration is defined as
the ca.lculatidps required to select a new point which satisfies the constraints

and does not repeat in yielding the lowest functior value.

4.3.2. Implemenf.ation

For our problem, Box’s complex algorithm is used to find the minimum of a

multivariable nonlinear function subject to a set of nonlinear equality constraints

min J(/\IO,/\RO)» . (1()2)

subject to

-9.0< Ao <9.0.

-1.0< g < 1.0. o

R = —(pcosQ + vec0503),

1 = (vpsing, + vesindy)/R + oy,

b2 = (vp5ingy + v.sings)/R + G2,
or(t) = —sgn[A(t)], t € (tkytes]

M) = Alte) + ;U:Sin("v”xk —oy(t =) + Ci), t € (trutrg]

1




sinCy,

Co

te (tks tk+l]

¢l(tk)’
~sgn[A; ()], t € (tr,tis]
sin(é1(tx) + 0k(tr) + Cr),

sin™ (Ao),

where J(.\lo, ARo) 2 ty —to, to is the initial time value and iy is the terminal time

at which the distance between two players reaches a given value. Therefore, in

our case, we have N=2, M=N=2,

For our problem, the following parameters have been used

Gl =
Hl =
G2 =

¥y =

6 =

We have two independent variables: A,

—_.9.0,
9.0,
-1.0,
1.0,
4,
0.001,
1.3,
3,

C.01.

. Aro and we do not have constraint fune-
RO

tions of explicit independent variables. in our implementation, after we randomly

generate a complex of K points, we compare the values at each point of the com- -

plex with that at the centroid of all points. If the value at the centroid is the

highest, we reselect the complex of starting points until the highest value does

not occur at the centroid of all points. Figures 4.6 and 4.7 show the simulation

results of our problem.
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In Figures 4.6 and 4.7, ImbdaR and Imbdal _represent the values of \p and
Ao. The solid line represnts the trajectory of the evader and the dashed line
renresents the trajectory of the pursuer. From these plots, we can see clearly how

the values of Ap and Ajq affect the trajectories of both plavers.

The parameters used in our simulation are:’

The speed of evader: vei = 20.0 (units).
The speed of pursuer: v, = 25.0 (units),
Initial distance: Ro = 100.0,
Final distance: R;f. = 200.0,
Initial off-boresight angle: ¢, " = 0.52,
Initial off-boresight angle: ¢, = 57.33,
Fixed control for the pursuer: o2 = 0.55.

The goal of the opt.mization technique is to minimize the time such that R in-
creases to a given value R,

From above, we know that although the optimal control law is obtained as-

__suming that the speeds for hoth players are the same. the control law also works

fine for the case with diflerent speeds.

In actual implementation, the process of control evalnation is (l(“h’(.‘l‘”)‘t,‘(l as
follows. Asshown in Figure 4.4, [t;,¢4] is one sample period. In this sample period.
[t1, 2] is thebsubinterval for identifying &,. Once &; is obtained, an optimization
process using Box’s complex algorithm is carried out for the evader to obtain
a sequence of optimal control values {u(t3),u(ts),...}. Once the optimization
process is completed, a control value from the sequence is issued to govern the next

movement. This whole process in [t,, ¢,] repeats for subsequent time intervals (sce
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Figure 1.4). However, if the &; is assumed fixed for entire encounter. a slightly
different scheme (see Figure 4.5) will be used, in which only one identification
process and one optimization process are needed and control values are issued

following the optimization process.

l T , optimization process lc l I 'optimization process ¢ ., . .

» Time
Bo% ts ta ts e %
Figure 4.4: Implementation Scheme 1
| I 'optimization process C , C | . . e :C|
T, © l - » Time

2 Ly tq T ta-1 tn

Figure 4.5: Implementation Scheme 2
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Figure 4.6: Simulation Results (a)
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5. Conclusion

It is said that the conimunity of Automatic Control is in an evélutionary phase,
which is not a revolution. This seems to be true. But élthough we have expe-
rienced the astonishing revolutionary phase of this field in the early sixties, we
should not overlook fhe great progress we have made and remarkable accomplish-
ments we have hchieved since then. We should not forget that each single step in

this long march was made by the joint efforts of each individual in our society.
ch ,

|

It is the author’s hope that this dissertation will be one of those small con-
tributions towa}rds the progress of modern technologi‘es in the field of artificial
intelligence methodologies in control systems. The second chapter of this disser-

tation mathemgxtically formulated the control systems inside the neural networks.

Introducing a slnall feedback loop INSIDE each neuron, instead of a feedback con-

nection in the network, we presented the discretized version of recurrent neural
- networks. Usin these types of neural networks, we showed how to use the inter-
nal states dircc:tl_v to construct a feedback control law. What is more important.
a network of this type is itself a system and not an unknown “Black Box™. and
thus'its input-ovtput performance can be studied just as is the case for a classical
control system. Therefore, many conventional synthesis methods can be directly
borrowed to design a controller.

The third chapter of this dissertation. discusses the issues of applying neural

network techniques to classical differential game problems. To model the real-time

game situation more realistically, a configuration, based on the stages in real-life
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conflicts, is proposed. Based on the paradigm of semantic control. the config-
uration can be used further to derive two paradigms of differential games with
neur&l retworks. To demonstrate the effectiveness of the mét'h')d, we carried out
a simulation experiment and studied a pursuit-evasion game problem. The same
principle, paradigm and structure have the potential of being applicable to an
entire class of pursuit-evasion game problems. We also sﬁudied the external loafn-
ing algorithm for a neural controller, which may be used in one of the paradigms
discussed previously. To test the algorithm, a real-time aircraft control problem

" in the presence of windshear has been studied.

The fourth chapter of this dissertation has discussed the Layered Defense
Project. The project, which was initiated in June, 1991, is a real-time pursuit-
evasion game problem with one evader and multi-pursuers. Based on line-of-sight
coordinates this dissertation has discussed and solved the optimal control problem
arising from the project. Box’s algoritﬁm has been used to find the optimal values

for the costates.

Here, the following areas seem to be of sufficient interest to indicate further

research and investigation:

1. to conlider a robust, multi-purpose. real-time controller for various types of

applica\\ic)ns and problems. a product of a merger of the advenced techuigues

in the areas of artificial intelligence and control systems.

2. to more jntelligently and massively incorporate parallel computer architec-

ture intoja control system, e. g. using neural networks,

3. to incorporate the graphical interface into a workstation-based control sys-

tem,
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{i ' , % 4. to establish and fully utilize a data-base for knowledge representation and
L 4 / ? knowledge process,
/ &
/’I 5. to more intelligently apply neural network fechniques for control systems,
\§lxich is a promising area since the learning capaéity, robustness, and mem-
* ory capacity of neura! networks prévide revolutionary tools and mechanisms
for the future of control systems.
To summarize, we have the féllowing contributions of this dissertation to the
area of artificial intelligence methodologies in aerospace and other control systems:
: R : .

1. Although several applications are observed in using recurrent neural net-
works for control systems [73, 74, 93], there is no one in the past few years
who has studied the issues of controllability /observability, linearizaBility
via change of coordinates for such type of neu:ai networks for control sys-
tems. This dissertation has covered these interesting topics and the results
are satisfactory. Tor the first time, the so-called Separation Principle of

_ Learning and Control is proposed. The significance of this study lies in the
o v thoughts of exploring the intelligence/learning capacity and parallel archi-

tectures of neural networks for the purpose of control. This study has shown

the promise for future research in this direction.

Motivated by the works in [77, 93], we have developed a new approach to

(87
.

differential games with neural networks. The approach which is based on
the semantic control theory is more realistic to the real-life conflicts and has
the potential of being applicable to an entire class of pursuit-evasion game
problems. The study is significant for the community of differential games.

In our study, the assumption that both players act optimally at all times
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is no longer valid. This is particularly true for air-combat problems since
during the real combat modeling an entire encounter in a fixed mathematical
equation is essentially not realistic, and both players (assuming only two
players in the encounter) always act according to their opponent’s perceived
action and their goals. Therefore, the configuration based on this idea is
much closer to the real-time situation and can be used to de\'élop more

advanced algorithms.

The aircraft control in the presence of windshear is an interesfing prob-
lem. The learning algorithm, which is originaily developed for the ncural
controller in Chapter 3, is applied to the control of aircraft encounting wind-
shear. Explicit formulas for evaluating weights in a neural cont;roller have
beén given. The approach offers the advantages such as being easy to im-
plement in practice, being applicable in several different windshear models

without any change of control law.

Chapter 4 of this dissertation has discussed another aspect of artificial intel-
ligence techniques for control éystems: rule-based expert system applied in a
class of pursuit-evasion game problems. Line-of-sight coordin_ates have been
used by several authors such as Shinar [SZ Sl] in stud_{' of puvrs”uit;o\r'rasion
game problems. Based on the line-of-sight coordinates this dissertation has
discussed and solved the optimal control problem arising from the project.
There are three main differences between their approaches and ours. First.
their solution requires retrointegration of costate equations, which is usually
very time-consuming. The derived optimal control solution for our problem
has an explicit formula which can be implemented in time-forward fash-

ion. Thus, time-saving in implementing the solution is significant since it
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does not require retrointegration which is normally performed in computin'g,r
cptimal control solutions. Second, the Box’s complex algorithm has been
incorporated into our optimal control problems. This particular aspect is
interesting. Third, in our approach, the pursuer’s strategy is assumed to
be known and fixed during the evaluation of optimal control whivle in Shi-
nar’s work the control strategies for both pursuer and evader are evaluated
simultaneously. This observation suggests the potential ‘application of our
results in Chapter 3 to this particular project. From above, we can see that

our approach does offer several advantages over previous work.
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